Artificial Intelligence
AI literacy and continuous education are cornerstones
Across the US, workers are experiencing a seismic shift in workplace operations as AI literacy becomes a core part of business strategies. This is redefining roles and expectations, while workloads continue to increase and pressure intensifies.
As the employment landscape transforms, it has become clear that the future of work and talent will be defined by three main areas – continuous education, greater flexibility, and AI literacy. This is according to new research conducted by The Harris Poll, who discovered that employers who invest heavily in educational benefits and AI development gain key advantages.
Priya Krishnan, Chief Transformation Officer, Bright Horizons, said, “AI is rewriting job descriptions fast… employers who invest in education benefits and AI training now will build resilient, innovative teams.”
AI skills demand heightens with workloads
According to the 2025 EdAssist by Bright Horizons Education Index, 42% of US employees are expecting AI to significantly change their role over the next year, despite only 17% actively using AI on a frequent basis. However, the report revealed that the increased adoption of AI is not the key talking point – it’s the urgent skills mandate AI has triggered.
Workers now feel they have to evolve to remain competitive, with 32% feeling increased pressure to learn new skills because of AI, an increase from 26% in 2024. The demand for upskilling comes as workforce stress hits new heights. For instance, 81% of employees report being pushed to take on greater workloads, and 80% stated they are expected to deliver work faster.
AI has the ability to reduce some of this strain, but without proper guidance and training, employees will struggle to use it effectively. The report found that the adoption of AI technology rises to 76% when employers provide AI training, while workers who have access to training (84%) reported feeling more prepared for potential changes than those without (48%). Essentially, effective training turns uncertainty into confidence.
Ultimately, 34% of those surveyed said they feel unprepared for changes driven by AI, and 42% said their employers expected them to develop their understanding of AI alone, without any formal training.
“AI is rewriting job descriptions faster than most organisations can keep up,” said Priya Krishnan, Chief Transformation Officer at Bright Horizons. “Employers who act now will not only close important skill gaps but also build a culture of resilience and innovation. This is not about chasing trends but creating a workforce that thrives in a world where technology and human capability advance together. Education benefits, flexible learning, and AI literacy are the foundation for long-term competitiveness.”
Education benefits drive retention and readiness
The EdIndex highlights how investing in employee education can pay off, both for employees and employers. However, challenges are still present, with a key concern being financial barriers.
According to the report, the skills gap is not simply about technology, it’s about “access and affordability.” 48% of employees surveyed said they avoid further education, citing the “fear of student debt” as the main reason. 34% reported that they cannot afford any more student loan debt, therefore curtailing any career advancement and blocking opportunities. The underscores the need for affordable, employer-sponsored learning programmes that allow employees the chance to progress.
Employees highly value education support, with 85% reporting that they would be more loyal to employers that invest in continuing education. 86% said they would choose a job that offers such opportunities over one that doesn’t.
82% believe employer support for learning is crucial, while 29% aid it is essential for their job. In addition, 74% said they would be more loyal to an employer if they helped pay off their student loans, further emphasising how the alleviation of financial obstacles drives loyalty and retention, as well as ROI for employers.
Over half (55%) of respondents are more likely to remain with a company if AI training or certification is available, and 76% actively use AI when training has been provided, compared to only 25% without formal training.
2026 predictions
Looking ahead to 2026, the report highlights five key shifts and how employers can start preparing now. First, the report predicts AI literacy will become essential in the workplace as automation affects almost all jobs. Therefore, companies need to develop AI training programmes and ongoing support that enable employees to feel confident when using new tools.
Secondly, upskilling is set to give employers and employees a significant competitive advantage. Organisations that invest heavily in both technical and soft skills will be better equipped for innovation and adaption going forward.
Third, flexible education benefits will be key to ensuring employee retention. Workers are increasingly seeking employers who provide financial support and remove financial barriers that limit their learning, so those who offer certain “perks,” like debt-free programmes and tuition support will be more likely to attract and retain talent.
The fourth major prediction is how continuous learning will become a key component of workplace environments. With roles evolving, the report says employers must set clear career pathways with personalised learning plans that help their employees grow.
Finally, work-life balance is expected to play a huge role. Companies that blend education benefits with flexibility and well-being support that reduces stress have a higher chance of maintaining a loyal workforce.
Pressure remains
Although career satisfaction appears high at 87%, workers are under continuing pressure, with 78% feeling pushed to perform tasks outside their main role. As a result, priorities are shifting quickly. While earning a raise remains an important factor with 57% naming it a key priority, work-life balance (43%) and stress reduction (35%) are surging, rising sharply from 2024’s numbers of 35% and 29% respectively.
While 90% say they feel somewhat prepared as their job role evolves, this confidence drops when AI is brought into the equation, as just 66% feel ready for AI’s certain impact. AI may be easing some areas of work, but its presence is also rising workplace pressure.
The 2025 EdAssist report suggests, “The employers who act now by embedding skill development opportunities, AI training, short-form learning, and debt-conscious benefits into their talent strategy will future-proof their business and avoid being left behind as the competition for skills intensifies.” Only when employers take these steps can they build a workforce capable of sustaining long-term growth and navigating the changes that lie ahead.
(Image source: “HMS St Albans’ Ship’s Company conduct a training day in the Plymouth exercise areas” by Royal Navy Media Archive is licensed under CC BY-NC 2.0.)
Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and co-located with other leading technology events. Click here for more information.
AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.
Artificial Intelligence
Ronnie Sheth, CEO, SENEN Group: Why now is the time for enterprise AI to ‘get practical'
Before you set sail on your AI journey, always check the state of your data – because if there is one thing likely to sink your ship, it is data quality.
Gartner estimates that poor data quality costs organisations an average of $12.9 million each year in wasted resources and lost opportunities. That’s the bad news. The good news is that organisations are increasingly understanding the importance of their data quality – and less likely to fall into this trap.
That’s the view of Ronnie Sheth, CEO of AI strategy, execution and governance firm SENEN Group. The company focuses on data and AI advisory, operationalisation and literacy, and Sheth notes she has been in the data and AI space ‘ever since [she] was a corporate baby’, so there is plenty of real-world experience behind the viewpoint. There is also plenty of success; Sheth notes that her company has a 99.99% client repeat rate.
“If I were to be very practical, the one thing I’ve noticed is companies jump into adopting AI before they’re ready,” says Sheth. Companies, she notes, will have an executive direction insisting they adopt AI, but without a blueprint or roadmap to accompany it. The result may be impressive user numbers, but with no measurable outcome to back anything up.
Even as recently as 2024, Sheth saw many organisations struggling because their data was ‘nowhere where it needed to be.’ “Not even close,” she adds. Now, the conversation has turned more practical and strategic. Companies are realising this, and coming to SENEN Group initially to get help with their data, rather than wanting to adopt AI immediately.
“When companies like that come to us, the first course of order is really fixing their data,” says Sheth. “The next course of order is getting to their AI model. They are building a strong foundation for any AI initiative that comes after that.
“Once they fix their data, they can build as many AI models as they want, and they can have as many AI solutions as they want, and they will get accurate outputs because now they have a strong foundation,” Sheth adds.
With breadth and depth in expertise, SENEN Group allows organisations to right their course. Sheth notes the example of one customer who came to them wanting a data governance initiative. Ultimately, it was the data strategy which was needed – the why and how, the outcomes of what they were trying to do with their data – before adding in governance and providing a roadmap for an operating model. “They’ve moved from raw data to descriptive analytics, moving into predictive analytics, and now we’re actually setting up an AI strategy for them,” says Sheth.
It is this attitude and requirement for practical initiatives which will be the cornerstone of Sheth’s discussion at AI & Big Data Expo Global in London this week. “Now would be the time to get practical with AI, especially enterprise AI adoption, and not think about ‘look, we’re going to innovate, we’re going to do pilots, we’re going to experiment,’” says Sheth. “Now is not the time to do that. Now is the time to get practical, to get AI to value. This is the year to do that in the enterprise.”
Watch the full video conversation with Ronnie Sheth below:
Artificial Intelligence
Apptio: Why scaling intelligent automation requires financial rigour
Greg Holmes, Field CTO for EMEA at Apptio, an IBM company, argues that successfully scaling intelligent automation requires financial rigour.
The “build it and they will come” model of technology adoption often leaves a hole in the budget when applied to automation. Executives frequently find that successful pilot programmes do not translate into sustainable enterprise-wide deployments because initial financial modelling ignored the realities of production scaling.
“When we integrate FinOps capabilities with automation, we’re looking at a change from being very reactive on cost management to being very proactive around value engineering,” says Holmes.
This shifts the assessment criteria for technical leaders. Rather than waiting “months or years to assess whether things are getting value,” engineering teams can track resource consumption – such as cost per transaction or API call – “straight from the beginning.”
The unit economics of scaling intelligent automation
Innovation projects face a high mortality rate. Holmes notes that around 80 percent of new innovation projects fail, often because financial opacity during the pilot phase masks future liabilities.
“If a pilot demonstrates that automating a process saves, say, 100 hours a month, leadership thinks that’s really successful,” says Holmes. “But what it fails to track is that the pilot sometimes is running on over-provisioned infrastructure, so it looks like it performs really well. But you wouldn’t over-provision to that degree during a real production rollout.”
Moving that workload to production changes the calculus. The requirements for compute, storage, and data transfer increase. “API calls can multiply, exceptions and edge cases appear at volume that might have been out of scope for the pilot phase, and then support overheads just grow as well,” he adds.
To prevent this, organisations must track the marginal cost at scale. This involves monitoring unit economics, such as the cost per customer served or cost per transaction. If the cost per customer increases as the customer base grows, the business model is flawed.
Conversely, effective scaling should see these unit costs decrease. Holmes cites a case study from Liberty Mutual where the insurer was able to find around $2.5 million of savings by bringing in consumption metrics and “not just looking at labour hours that they were saving.”
However, financial accountability cannot sit solely with the finance department. Holmes advocates for putting governance “back in the hands of the developers into their development tools and workloads.”
Integration with infrastructure-as-code tools like HashiCorp Terraform and GitHub allows organisations to enforce policies during deployment. Teams can spin up resources programmatically with immediate cost estimates.
“Rather than deploying things and then fixing them up, which gets into the whole whack-a-mole kind of problem,” Holmes explains, companies can verify they are “deploying the right things at the right time.”
When scaling intelligent automation, tension often simmers between the CFO, who focuses on return on investment, and the Head of Automation, who tracks operational metrics like hours saved.
“This translation challenge is precisely what TBM (Technology Business Management) and Apptio are designed to solve,” says Holmes. “It’s having a common language between technology and finance and with the business.”
The TBM taxonomy provides a standardised framework to reconcile these views. It maps technical resources (such as compute, storage, and labour) into IT towers and further up to business capabilities. This structure translates technical inputs into business outputs.
“I don’t necessarily know what goes into all the IT layers underneath it,” Holmes says, describing the business user’s perspective. “But because we’ve got this taxonomy, I can get a detailed bill that tells me about my service consumption and precisely which costs are driving it to be more expensive as I consume more.”
Addressing legacy debt and budgeting for the long-term
Organisations burdened by legacy ERP systems face a binary choice: automation as a patch, or as a bridge to modernisation. Holmes warns that if a company is “just trying to mask inefficient processes and not redesign them,” they are merely “building up more technical debt.”
A total cost of ownership (TCO) approach helps determine the correct strategy. The Commonwealth Bank of Australia utilised a TCO model across 2,000 different applications – of various maturity stages – to assess their full lifecycle costs. This analysis included hidden costs such as infrastructure, labour, and the engineering time required to keep automation running.
“Just because of something’s legacy doesn’t mean you have to retire it,” says Holmes. “Some of those legacy systems are worth maintaining just because the value is so good.”
In other cases, calculating the cost of the automation wrappers required to keep an old system functional reveals a different reality. “Sometimes when you add up the TCO approach, and you’re including all these automation layers around it, you suddenly realise, the real cost of keeping that old system alive is not just the old system, it’s those extra layers,” Holmes argues.
Avoiding sticker shock requires a budgeting strategy that balances variable costs with long-term commitments. While variable costs (OPEX) offer flexibility, they can fluctuate wildly based on demand and engineering efficiency.
Holmes advises that longer-term visibility enables better investment decisions. Committing to specific technologies or platforms over a multi-year horizon allows organisations to negotiate economies of scale and standardise architecture.
“Because you’ve made those longer term commitments and you’ve standardised on different platforms and things like that, it makes it easier to build the right thing out for the long term,” Holmes says.
Combining tight management of variable costs with strategic commitments supports enterprises in scaling intelligent automation without the volatility that often derails transformation.
IBM is a key sponsor of this year’s Intelligent Automation Conference Global in London on 4-5 February 2026. Greg Holmes and other experts will be sharing their insights during the event. Be sure to check out the day one panel session, Scaling Intelligent Automation Successfully: Frameworks, Risks, and Real-World Lessons, to hear more from Holmes and swing by IBM’s booth at stand #362.
See also: Klarna backs Google UCP to power AI agent payments

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and is co-located with other leading technology events including the Cyber Security & Cloud Expo. Click here for more information.
AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.
Artificial Intelligence
FedEx tests how far AI can go in tracking and returns management
FedEx is using AI to change how package tracking and returns work for large enterprise shippers. For companies moving high volumes of goods, tracking no longer ends when a package leaves the warehouse. Customers expect real-time updates, flexible delivery options, and returns that do not turn into support tickets or delays.
That pressure is pushing logistics firms to rethink how tracking and returns operate at scale, especially across complex supply chains.
This is where artificial intelligence is starting to move from pilot projects into daily operations.
FedEx plans to roll out AI-powered tracking and returns tools designed for enterprise shippers, according to a report by PYMNTS. The tools are aimed at automating routine customer service tasks, improving visibility into shipments, and reducing friction when packages need to be rerouted or sent back.
Rather than focusing on consumer-facing chatbots, the effort centres on operational workflows that sit behind the scenes. These are the systems enterprise customers rely on to manage exceptions, returns, and delivery changes without manual intervention.
How FedEx is applying AI to package tracking
Traditional tracking systems tell customers where a package is and when it might arrive. AI-powered tracking takes a step further by utilising historical delivery data, traffic patterns, weather conditions, and network constraints to flag potential delays before they happen.
According to the PYMNTS report, FedEx’s AI tools are designed to help enterprise shippers anticipate issues earlier in the delivery process. Instead of reacting to missed delivery windows, shippers may be able to reroute packages or notify customers ahead of time.
For businesses that ship thousands of parcels per day, that shift matters. Small improvements in prediction accuracy can reduce support calls, lower refund rates, and improve customer trust, particularly in retail, healthcare, and manufacturing supply chains.
This approach also reflects a broader trend in enterprise software, in which AI is being embedded into existing systems rather than introduced as standalone tools. The goal is not to replace logistics teams, but to minimise the number of manual decisions they need to make.
Returns as an operational problem, not a customer issue
Returns are one of the most expensive parts of logistics. For enterprise shippers, particularly those in e-commerce, returns affect warehouse capacity, inventory planning, and transportation costs.
According to PYMNTS, FedEx’s AI-enabled returns tools aim to automate parts of the returns process, including label generation, routing decisions, and status updates. Companies that use AI to determine the most efficient return path may be able to reduce delays and avoid returning things to the wrong facility.
This is less about convenience and more about operational discipline. Returns that sit idle or move through the wrong channel create cost and uncertainty across the supply chain. AI systems trained on past return patterns can help standardise decisions that were previously handled case by case.
For enterprise customers, this type of automation supports scale. As return volumes fluctuate, especially during peak seasons, systems that adjust automatically reduce the need for temporary staffing or manual overrides.
What FedEx’s AI tracking approach says about enterprise adoption
What stands out in FedEx’s approach is how narrowly focused the AI use case is. There are no broad claims about transformation or reinvention. The emphasis is on reducing friction in processes that already exist.
This mirrors how other large organisations are adopting AI internally. In a separate context, Microsoft described a similar pattern in its article. The company outlined how AI tools were rolled out gradually, with clear limits, governance rules, and feedback loops.
While Microsoft’s case focused on knowledge work and FedEx’s on logistics operations, the underlying lesson is the same. AI adoption tends to work best when applied to specific activities with measurable results rather than broad promises of efficiency.
For logistics firms, those advantages include fewer delivery exceptions, lower return handling costs, and better coordination between shipping partners and enterprise clients.
What this signals for enterprise customers
For end-user companies, FedEx’s move signals that logistics providers are investing in AI as a way to support more complex shipping demands. As supply chains become more distributed, visibility and predictability become harder to maintain without automation.
AI-driven tracking and returns could also change how businesses measure logistics performance. Companies may focus less on delivery speed and more on how quickly issues are recognised and resolved.
That shift could influence procurement decisions, contract structures, and service-level agreements. Enterprise customers may start asking not just where a shipment is, but how well a provider anticipates problems.
FedEx’s plans reflect a quieter phase of enterprise AI adoption. The focus is less on experimentation and more on integration. These systems are not designed to draw attention but to reduce noise in operations that customers only notice when something goes wrong.
(Photo by Liam Kevan)
See also: PepsiCo is using AI to rethink how factories are designed and updated
Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and is co-located with other leading technology events, click here for more information.
AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.
-
Fintech6 months agoRace to Instant Onboarding Accelerates as FDIC OKs Pre‑filled Forms | PYMNTS.com
-
Cyber Security7 months agoHackers Use GitHub Repositories to Host Amadey Malware and Data Stealers, Bypassing Filters
-
Fintech6 months ago
DAT to Acquire Convoy Platform to Expand Freight-Matching Network’s Capabilities | PYMNTS.com
-
Fintech5 months agoID.me Raises $340 Million to Expand Digital Identity Solutions | PYMNTS.com
-
Artificial Intelligence7 months agoNothing Phone 3 review: flagship-ish
-
Artificial Intelligence7 months agoThe best Android phones
-
Fintech4 months agoTracking the Convergence of Payments and Digital Identity | PYMNTS.com
-
Fintech7 months agoIntuit Adds Agentic AI to Its Enterprise Suite | PYMNTS.com
