Connect with us

Artificial Intelligence

Top 7 best AI penetration testing companies in 2026

Published

on

Penetration testing has always existed to answer one practical concern: what actually happens when a motivated attacker targets a real system. For many years, that answer was produced through scoped engagements that reflected a relatively stable environment. Infrastructure changed slowly, access models were simpler, and most exposure could be traced back to application code or known vulnerabilities.

That operating reality does not exist. Modern environments are shaped by cloud services, identity platforms, APIs, SaaS integrations, and automation layers that evolve continuously. Exposure is introduced through configuration changes, permission drift, and workflow design as often as through code. As a result, security posture can shift materially without a single deployment.

Attackers have adapted accordingly. Reconnaissance is automated. Exploitation attempts are opportunistic and persistent. Weak signals are correlated in systems and chained together until progression becomes possible. In this context, penetration testing that remains static, time-boxed, or narrowly scoped struggles to reflect real risk.

How AI penetration testing changes the role of offensive security

Traditional penetration testing was designed to surface weaknesses during a defined engagement window. That model assumed environments remained relatively stable between tests. In cloud-native and identity-centric architectures, this assumption does not hold.

AI penetration testing operates as a persistent control not a scheduled activity. Platforms reassess attack surfaces as infrastructure, permissions, and integrations change. This lets security teams detect newly introduced exposure without waiting for the next assessment cycle.

As a result, offensive security shifts from a reporting function into a validation mechanism that supports day-to-day risk management.

The top 7 best AI penetration testing companies

1. Novee

Novee is an AI-native penetration testing company focused on autonomous attacker simulation in modern enterprise environments. The platform is designed to continuously validate real attack paths and not produce static reports.

Novee models the full attack lifecycle, including reconnaissance, exploit validation, lateral movement, and privilege escalation. Its AI agents adapt their behaviour based on environmental feedback, abandoning ineffective paths and prioritising those that lead to impact. This results in fewer findings with higher confidence.

The platform is particularly effective in cloud-native and identity-heavy environments where exposure changes frequently. Continuous reassessment ensures that risk is tracked as systems evolve, not frozen at the moment of a test.

Novee is often used as a validation layer to support prioritisation and confirm that remediation efforts actually reduce exposure.

Key characteristics:

  • Autonomous attacker simulation with adaptive logic
  • Continuous attack surface reassessment
  • Validated attack-path discovery
  • Prioritisation based on real progression
  • Retesting to confirm remediation effectiveness

2. Harmony Intelligence

Harmony Intelligence focuses on AI-driven security testing with an emphasis on understanding how complex systems behave under adversarial conditions. The platform is designed to surface weaknesses that emerge from interactions between components not from isolated vulnerabilities.

Its approach is particularly relevant for organisations running interconnected services and automated workflows. Harmony Intelligence evaluates how attackers could exploit logic gaps, misconfigurations, and trust relationships in systems.

The platform emphasises interpretability. Findings are presented in a way that explains why progression was possible, which helps teams understand and address root causes not symptoms.

Harmony Intelligence is often adopted by organisations seeking deeper insight into systemic risk, not surface-level exposure.

Key characteristics:

  • AI-driven testing of complex system interactions
  • Focus on logic and workflow exploitation
  • Clear contextual explanation of findings
  • Support for remediation prioritisation
  • Designed for interconnected enterprise environments

3. RunSybil

RunSybil is positioned around autonomous penetration testing with a strong emphasis on behavioural realism. The platform simulates how attackers operate over time, including persistence and adaptation.

Rather than executing predefined attack chains, RunSybil evaluates which actions produce meaningful access and adjusts accordingly. This makes it effective at identifying subtle paths that emerge from configuration drift or weak segmentation.

RunSybil is frequently used in environments where traditional testing produces large volumes of low-value findings. Its validation-first approach helps teams focus on paths that represent genuine exposure.

The platform supports continuous execution and retesting, letting security teams measure improvement not rely on static assessments.

Key characteristics:

  • Behaviour-driven autonomous testing
  • Focus on progression and persistence
  • Reduced noise through validation
  • Continuous execution model
  • Measurement of remediation impact

4. Mindgard

Mindgard specialises in adversarial testing of AI systems and AI-enabled workflows. Its platform evaluates how AI components behave under malicious or unexpected input, including manipulation, leakage, and unsafe decision paths.

The focus is increasingly important as AI becomes embedded in business-important processes. Failures often stem from logic and interaction effects, not traditional vulnerabilities.

Mindgard’s testing approach is proactive. It is designed to surface weaknesses before deployment and to support iterative improvement as systems evolve.

Organisations adopting Mindgard typically view AI as a distinct security surface that requires dedicated validation beyond infrastructure testing.

Key characteristics:

  • Adversarial testing of AI and ML systems
  • Focus on logic, behaviour, and misuse
  • Pre-deployment and continuous testing support
  • Engineering-actionable findings
  • Designed for AI-enabled workflows

5. Mend

Mend approaches AI penetration testing from a broader application security perspective. The platform integrates testing, analysis, and remediation support in the software lifecycle.

Its strength lies in correlating findings in code, dependencies, and runtime behaviour. This helps teams understand how vulnerabilities and misconfigurations interact, not treating them in isolation.

Mend is often used by organisations that want AI-assisted validation embedded into existing AppSec workflows. Its approach emphasises practicality and scalability over deep autonomous simulation.

The platform fits well in environments where development velocity is high and security controls must integrate seamlessly.

Key characteristics:

  • AI-assisted application security testing
  • Correlation in multiple risk sources
  • Integration with development workflows
  • Emphasis on remediation efficiency
  • Scalable in large codebases

6. Synack

Synack combines human expertise with automation to deliver penetration testing at scale. Its model emphasises trusted researchers operating in controlled environments.

While not purely autonomous, Synack incorporates AI and automation to manage scope, triage findings, and support continuous testing. The hybrid approach balances creativity with operational consistency.

Synack is often chosen for high-risk systems where human judgement remains critical. Its platform supports ongoing testing not one-off engagements.

The combination of vetted talent and structured workflows makes Synack suitable for regulated and mission-important environments.

Key characteristics:

  • Hybrid model combining humans and automation
  • Trusted researcher network
  • Continuous testing ability
  • Strong governance and control
  • Suitable for high-assurance environments

7. HackerOne

HackerOne is best known for its bug bounty platform, but it also plays a role in modern penetration testing strategies. Its strength lies in scale and diversity of attacker perspectives.

The platform lets organisations to continuously test systems through managed programmes with structured disclosure and remediation workflows. While not autonomous in the AI sense, HackerOne increasingly incorporates automation and analytics support prioritisation.

HackerOne is often used with AI pentesting tools not as a replacement. It provides exposure to creative attack techniques that automated systems may not uncover.

Key characteristics:

  • Large global researcher community
  • Continuous testing through managed programmes
  • Structured disclosure and remediation
  • Automation to support triage and prioritisation
  • Complementary to AI-driven testing

How enterprises use AI penetration testing in practice

AI penetration testing is most effective when used as part of a layered security strategy. It rarely replaces other controls outright. Instead, it fills a validation gap that scanners and preventive tools cannot address alone.

A common enterprise pattern includes:

  • Vulnerability scanners for detection coverage
  • Preventive controls for baseline hygiene
  • AI penetration testing for continuous validation
  • Manual pentests for deep, creative exploration

In this model, AI pentesting serves as the connective tissue. It determines which detected issues matter in practice, validates remediation effectiveness, and highlights where assumptions break down.

Organisations adopting this approach often report clearer prioritisation, faster remediation cycles, and more meaningful security metrics.

The future of security teams with ai penetration testing

The impact of this new wave of offensive security has been transformative for the security workforce. Instead of being bogged down by repetitive vulnerability finding and retesting, security specialists can focus on incident response, proactive defense strategies, and risk mitigation. Developers get actionable reports and automated tickets, closing issues early and reducing burnout. Executives gain real-time assurance that risk is being managed every hour of every day.

AI-powered pentesting, when operationalised well, fundamentally improves business agility, reduces breach risk, and helps organisations meet the demands of partners, customers, and regulators who are paying closer attention to security than ever before.

Image source: Unsplash

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Artificial Intelligence

SuperCool review: Evaluating the reality of autonomous creation

Published

on

In the current landscape of generative artificial intelligence, we have reached a saturation point with assistants. Most users are familiar with the routine. You prompt a tool, it provides a draft, and then you spend the next hour manually moving that output into another application for formatting, design, or distribution. AI promised to save time, yet the tool hop remains a bottleneck for founders and creative teams.

SuperCool enters this crowded market with an importantly different value proposition. It does not want to be your assistant. It wants to be your execution partner. By positioning itself at the execution layer of creative projects, SuperCool aims to bridge the gap between a raw idea and a finished, downloadable asset without requiring the user to leave the platform.

Redefining the creative workflow

The core philosophy behind SuperCool is to remove coordination overhead. For most businesses, creating a high-quality asset, whether it is a pitch deck, a marketing video, or a research report, requires a patchwork approach. You might use one AI for text, another for images, and a third for layout. SuperCool replaces this fragmented stack with a unified system of autonomous agents that work in concert.

As seen in the primary dashboard interface, the platform presents a clean, minimalist entry point. The user is greeted with a simple directive: “Give SuperCool a task to work on…”. The simplicity belies the complexity occurring under the hood. Unlike traditional tools that require you to navigate menus and settings, the SuperCool experience is driven entirely by natural language prompts.

How the platform operates in practice

The workflow begins with a natural-language prompt that describes the desired outcome, the intended audience, and any specific constraints. One of the most impressive features observed during this review is the transparency of the agentic process.

When a user submits a request, for instance, “create a pitch deck for my B2B business,” the platform does not just return a file a few minutes later. Instead, it breaks the project down into logical milestones that the user can monitor in real time.

  1. Strategic planning: The AI first outlines the project structure, like the presentation flow.
  2. Asset generation: It then generates relevant visuals and data visualisations tailored to the specific industry context.
  3. Final assembly: The system designs the complete deck, ensuring cohesive styling and professional layouts.

Visibility is crucial for trust. It allows the user to see that the AI is performing research and organising content not just hallucinating a generic response. The final result is a professional, multi-slide product, often featuring 10 or more professionally designed slides, delivered as an exportable file like a PPTX.

Versatility across use cases

SuperCool’s utility is most apparent in scenarios where speed and coverage are more valuable than pixel-perfect manual control. We observed three primary areas where the platform excels:

End-to-end content creation

For consultants and solo founders, the time saved on administrative creative tasks is immense. A consultant onboarding a new client can describe the engagement and instantly receive a welcome packet, a process overview, and a timeline visual.

Multi-format asset kits:

Perhaps the most powerful feature is the ability to generate different types of media from a single prompt. An HR team launching an employee handbook can request a kit that includes a PDF guide, a short video, and a presentation deck.

Production without specialists:

Small teams often face a production gap where they lack the budget for full-time designers or video editors. SuperCool effectively fills this gap, allowing a two-person team to produce branded graphics and videos without expanding headcount.

Navigating the learning curve

While the platform is designed for ease of use, it is not a magic wand for those without a clear vision. The quality of the output is heavily dependent on the clarity of the initial prompt. Vague instructions will lead to generic results. SuperCool is built for professionals who know what they want but do not want to spend hours manually building it.

Because the system is autonomous, users have less mid-stream control. You cannot tweak a design element while the agents are working. Instead, refinement happens through iteration in the chat interface. If the first version is not perfect, you provide feedback, and the system regenerates the asset with those adjustments in mind.

The competitive landscape: Assistant vs.agent

In the current AI ecosystem, most tools are categorised as assistants. They perform specific, isolated tasks, leaving the user responsible for overseeing the entire process. SuperCool represents the shift toward agentic AI, in which the system takes responsibility for the entire workflow.

The distinction is vital for enterprise contexts. While assistants require constant hand-holding, an agentic system like SuperCool allows the user to focus on high-level ideation and refinement. It moves the user from builder to director.

Final assessment

SuperCool is a compelling alternative for those who find the current tool-stack approach a drain on productivity. It is not necessarily a replacement for specialised creative software when a brand needs unique, handcrafted artistry. However, for the vast majority of business needs, where speed, consistency, and execution are paramount, it offers perhaps the shortest path from an idea to a finished product.

For founders and creative teams who value the ability to rapidly test ideas and deploy content without the overhead of specialised software, SuperCool is a step forward in the evolution of autonomous work.

Image source: Unsplash

Continue Reading

Artificial Intelligence

Cryptocurrency markets a testbed for AI forecasting models

Published

on

Cryptocurrency markets have become a high-speed playground where developers optimise the next generation of predictive software. Using real-time data flows and decentralised platforms, scientists develop prediction models that can extend the scope of traditional finance.

The digital asset landscape offers an unparalleled environment for machine learning. When you track cryptocurrency prices today, you are observing a system shaped simultaneously by on-chain transactions, global sentiment signals, and macroeconomic inputs, all of which generate dense datasets suited for advanced neural networks.

Such a steady trickle of information makes it possible to assess and reapply an algorithm without interference from fixed trading times or restrictive market access.

The evolution of neural networks in forecasting

Current machine learning technology, particularly the “Long Short-Term Memory” neuronal network, has found widespread application in interpreting market behaviour. A recurrent neural network, like an LSTM, can recognise long-term market patterns and is far more flexible than traditional analytical techniques in fluctuating markets.

The research on hybrid models that combine LSTMs with attention mechanisms has really improved techniques for extracting important signals from market noise. Compared to previous models that used linear techniques, these models analyse not only structured price data but also unstructured data.

With the inclusion of Natural Language Processing, it is now possible to interpret the flow of news and social media activity, enabling sentiment measurement. While prediction was previously based on historical stock pricing patterns, it now increasingly depends on behavioural changes in global participant networks.

A High-Frequency Environment for Model Validation

The transparency of blockchain data offers a level of data granularity that is not found in existing financial infrastructures. Each transaction is now an input that can be traced, enabling cause-and-effect analysis without delay.

However, the growing presence of autonomous AI agents has changed how such data is used. This is because specialised platforms are being developed to support decentralised processing in a variety of networks.

This has effectively turned blockchain ecosystems into real-time validation environments, where the feedback loop between data ingestion and model refinement occurs almost instantly.

Researchers use this setting to test specific abilities:

  • Real-time anomaly detection: Systems compare live transaction flows against simulated historical conditions to identify irregular liquidity behaviour before broader disruptions emerge.
  • Macro sentiment mapping: Global social behaviour data are compared to on-chain activity to assess true market psychology.
  • Autonomous risk adjustment: Programmes run probabilistic simulations to rebalance exposure dynamically as volatility thresholds are crossed.
  • Predictive on-chain monitoring: AI tracks wallet activity to anticipate liquidity shifts before they impact centralised trading venues.

These systems really do not function as isolated instruments. Instead, they adjust dynamically, continually changing their parameters in response to emerging market conditions.

The synergy of DePIN and computational power

To train complex predictive models, large amounts of computing power are required, leading to the development of Decentralised Physical Infrastructure Networks (DePIN). By using decentralised GPU capacity on a global computing grid, less dependence on cloud infrastructure can be achieved.

Consequently, smaller-scale research teams are afforded computational power that was previously beyond their budgets. This makes it easier and faster to run experiments in different model designs.

This trend is also echoed in the markets. A report dated January 2025 noted strong growth in the capitalisation of assets related to artificial intelligence agents in the latter half of 2024, as demand for such intelligence infrastructure increased.

From reactive bots to anticipatory agents

The market is moving beyond rule-based trading bots toward proactive AI agents. Instead of responding to predefined triggers, modern systems evaluate probability distributions to anticipate directional changes.

Gradient boosting and Bayesian learning methods allow the identification of areas where mean reversion may occur ahead of strong corrections.

Some models now incorporate fractal analysis to detect recurring structures in timeframes, further improving adaptability in rapidly-changing conditions.

Addressing model risk and infrastructure constraints

Despite such rapid progress, several problems remain. Problems identified include hallucinations in models, in which patterns found in a model do not belong to the patterns that cause them. Methods to mitigate this problem have been adopted by those applying this technology, including ‘explainable AI’.

The other vital requirement that has remained unaltered with the evolution in AI technology is scalability. With the growing number of interactions among autonomous agents, it is imperative that the underlying transactions efficiently manage the rising volume without latency or data loss.

At the end of 2024, the most optimal scaling solution handled tens of millions of transactions per day in an area that required improvement.

Such an agile framework lays the foundation for the future, where data, intelligence and validation will come together in a strong ecosystem that facilitates more reliable projections, better governance and greater confidence in AI-driven insights.

Continue Reading

Artificial Intelligence

Exclusive: Why are Chinese AI models dominating open-source as Western labs step back?

Published

on

Because Western AI labs won’t—or can’t—anymore. As OpenAI, Anthropic, and Google face mounting pressure to restrict their most powerful models, Chinese developers have filled the open-source void with AI explicitly built for what operators need: powerful models that run on commodity hardware.

A new security study reveals just how thoroughly Chinese AI has captured this space. Research published by SentinelOne and Censys, mapping 175,000 exposed AI hosts across 130 countries over 293 days, shows Alibaba’s Qwen2 consistently ranking second only to Meta’s Llama in global deployment. More tellingly, the Chinese model appears on 52% of systems running multiple AI models—suggesting it’s become the de facto alternative to Llama.

“Over the next 12–18 months, we expect Chinese-origin model families to play an increasingly central role in the open-source LLM ecosystem, particularly as Western frontier labs slow or constrain open-weight releases,” Gabriel Bernadett-Shapiro, distinguished AI research scientist at SentinelOne, told TechForge Media’s AI News.

The finding arrives as OpenAI, Anthropic, and Google face regulatory scrutiny, safety review overhead, and commercial incentives pushing them toward API-gated releases rather than publishing model weights freely. The contrast with Chinese developers couldn’t be sharper.

Chinese labs have demonstrated what Bernadett-Shapiro calls “a willingness to publish large, high-quality weights that are explicitly optimised for local deployment, quantisation, and commodity hardware.”

“In practice, this makes them easier to adopt, easier to run, and easier to integrate into edge and residential environments,” he added.

Put simply: if you’re a researcher or developer wanting to run powerful AI on your own computer without a massive budget, Chinese models like Qwen2 are often your best—or only—option.

Pragmatics, not ideology

Alibaba’s Qwen2 consistently ranks second only to Meta’s Llama across 175,000 exposed hosts globally. Source: SentinelOne/Censys

The research shows this dominance isn’t accidental. Qwen2 maintains what Bernadett-Shapiro calls “zero rank volatility”—it holds the number two position across every measurement method the researchers examined: total observations, unique hosts, and host-days. There’s no fluctuation, no regional variation, just consistent global adoption.

The co-deployment pattern is equally revealing. When operators run multiple AI models on the same system—a common practice for comparison or workload segmentation—the pairing of Llama and Qwen2 appears on 40,694 hosts, representing 52% of all multi-family deployments.

Geographic concentration reinforces the picture. In China, Beijing alone accounts for 30% of exposed hosts, with Shanghai and Guangdong adding another 21% combined. In the United States, Virginia—reflecting AWS infrastructure density—represents 18% of hosts.

China and the US dominate exposed Ollama host distribution, with Beijing accounting for 30% of Chinese deployments. Source: SentinelOne/Censys

“If release velocity, openness, and hardware portability continue to diverge between regions, Chinese model lineages are likely to become the default for open deployments, not because of ideology, but because of availability and pragmatics,” Bernadett-Shapiro explained.

The governance problem

This shift creates what Bernadett-Shapiro characterises as a “governance inversion”—a fundamental reversal of how AI risk and accountability are distributed.

In platform-hosted services like ChatGPT, one company controls everything: the infrastructure, monitors usage, implements safety controls, and can shut down abuse. With open-weight models, the control evaporates. Accountability diffuses across thousands of networks in 130 countries, while dependency concentrates upstream in a handful of model suppliers—increasingly Chinese ones.

The 175,000 exposed hosts operate entirely outside the control systems governing commercial AI platforms. There’s no centralised authentication, no rate limiting, no abuse detection, and critically, no kill switch if misuse is detected.

“Once an open-weight model is released, it is trivial to remove safety or security training,” Bernadett-Shapiro noted.”Frontier labs need to treat open-weight releases as long-lived infrastructure artefacts.”

A persistent backbone of 23,000 hosts showing 87% average uptime drives the majority of activity. These aren’t hobbyist experiments—they’re operational systems providing ongoing utility, often running multiple models simultaneously.

Perhaps most concerning: between 16% and 19% of the infrastructure couldn’t be attributed to any identifiable owner.”Even if we are able to prove that a model was leveraged in an attack, there are not well-established abuse reporting routes,” Bernadett-Shapiro said.

Security without guardrails

Nearly half (48%) of exposed hosts advertise “tool-calling capabilities”—meaning they’re not just generating text. They can execute code, access APIs, and interact with external systems autonomously.

“A text-only model can generate harmful content, but a tool-calling model can act,” Bernadett-Shapiro explained. “On an unauthenticated server, an attacker doesn’t need malware or credentials; they just need a prompt.”

Nearly half of exposed Ollama hosts have tool-calling capabilities that can execute code and access external systems. Source: SentinelOne/Censys

The highest-risk scenario involves what he calls “exposed, tool-enabled RAG or automation endpoints being driven remotely as an execution layer.” An attacker could simply ask the model to summarise internal documents, extract API keys from code repositories, or call downstream services the model is configured to access.

When paired with “thinking” models optimised for multi-step reasoning—present on 26% of hosts—the system can plan complex operations autonomously. The researchers identified at least 201 hosts running “uncensored” configurations that explicitly remove safety guardrails, though Bernadett-Shapiro notes this represents a lower bound.

In other words, these aren’t just chatbots—they’re AI systems that can take action, and half of them have no password protection.

What frontier labs should do

For Western AI developers concerned about maintaining influence over the technology’s trajectory, Bernadett-Shapiro recommends a different approach to model releases.

“Frontier labs can’t control deployment, but they can shape the risks that they release into the world,” he said. That includes “investing in post-release monitoring of ecosystem-level adoption and misuse patterns” rather than treating releases as one-off research outputs.

The current governance model assumes centralised deployment with diffuse upstream supply—the exact opposite of what’s actually happening. “When a small number of lineages dominate what’s runnable on commodity hardware, upstream decisions get amplified everywhere,” he explained. “Governance strategies must acknowledge that inversion.”

But acknowledgement requires visibility. Currently, most labs releasing open-weight models have no systematic way to track how they’re being used, where they’re deployed, or whether safety training remains intact after quantisation and fine-tuning.

The 12-18 month outlook

Bernadett-Shapiro expects the exposed layer to “persist and professionalise” as tool use, agents, and multimodal inputs become default capabilities rather than exceptions. The transient edge will keep churning as hobbyists experiment, but the backbone will grow more stable, more capable, and handle more sensitive data.

Enforcement will remain uneven because residential and small VPS deployments don’t map to existing governance controls. “This isn’t a misconfiguration problem,” he emphasised. “We are observing the early formation of a public, unmanaged AI compute substrate. There is no central switch to flip.”

The geopolitical dimension adds urgency. “When most of the world’s unmanaged AI compute depends on models released by a handful of non-Western labs, traditional assumptions about influence, coordination, and post-release response become weaker,” Bernadett-Shapiro said.

For Western developers and policymakers, the implication is stark: “Even perfect governance of their own platforms has limited impact on the real-world risk surface if the dominant capabilities live elsewhere and propagate through open, decentralised infrastructure.”

The open-source AI ecosystem is globalising, but its centre of gravity is shifting decisively eastward. Not through any coordinated strategy, but through the practical economics of who’s willing to publish what researchers and operators actually need to run AI locally.

The 175,000 exposed hosts mapped in this study are just the visible surface of that fundamental realignment—one that Western policymakers are only beginning to recognise, let alone address.

See also: Huawei details open-source AI development roadmap at Huawei Connect 2025

Banner for AI & Big Data Expo by TechEx events.

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and is co-located with other leading technology events including the Cyber Security & Cloud Expo. Click here for more information.

AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.

Continue Reading

Trending