Artificial Intelligence
How Cisco builds smart systems for the AI era
Among the big players in technology, Cisco is one of the sector’s leaders that’s advancing operational deployments of AI internally to its own operations, and the tools it sells to its customers around the world. As a large company, its activities encompass many areas of the typical IT stack, including infrastructure, services, security, and the design of entire enterprise-scale networks.
Cisco’s internal teams use a blend of machine learning and agentic AI to help them improve their own service delivery and personalise user experiences for its customers. It’s built a shared AI fabric built on patterns of compute and networking that are the product of years spent checking and validating its systems – battle-hardened solutions it then has the confidence to offer to customers. The infrastructure in play relies on high-performance GPUs, of course, but it’s not just raw horse-power. The detail is in the careful integration between compute and network stacks used in model training and the quite different demands from the ongoing load of inference.
Having made its name as the de facto supplier of networking infrastructure for the enterprise, it comes as no shock that it’s in network automation that some of its better-known uses of AI finds their place. Automated configuration workflows and identity management combine into access solutions that are focused on rapid network deployments generated by natural language.
For organisations looking to develop into the next generation of AI users, Cisco has been rolling out hardware and orchestration tools that are aimed explicitly to support AI workloads. A recent collaboration with chip giant NVIDIA led to the emergence of a new line of switches and the Nexus Hyperfabric line of AI network controllers. These aim to simplify the deployment of the complex clusters needed for top-end, high-performance artificial intelligence clusters.
Cisco’s Secure AI Factory framework with partners like NVIDIA and Run:ai is aimed at production-grade AI pipelines. It uses distributed orchestration, GPU utilisation governance, Kubernetes microservice optimisation, and storage, under the umbrella product description Intersight. For more local deployments, Cisco Unified Edge brings all the necessary elements – compute, networking, security, and storage – close to where data gets generated and processed.
In environments where latency metrics are critically important, AI processing at the edge is the answer. But Cisco’s approach is not necessarily to offer dedicated IIoT-specific solutions. Instead, it tries to extend the operational models typically found in a data centre and applies the same technology (if not the same exact methodology) to edge sites. It’s like data centre-grade security policies and configurations available to remote installations. Having the same precepts and standards in cloud and edge mean that Cisco accredited engineers can manage and maintain data centres or small edge deployments using the same skills, accreditation, knowledge, and experience.
Security and risk management figure prominently in the Cisco AI narrative. Its Integrated AI Security and Safety Framework applies high standards of safety and security throughout the life-cycle of AI systems. It considers adversarial threats, supply chain weakness, the risk profiles of multi-agent interactions, and multi-modal vulnerabilities as issues that have to be addressed regardless of the nature or size of any deployment.
Cisco’s work on operational AI also reflects broader ecosystem conversations. The company markets products for organisations wanting to make the transition from generative to agentic AI, where autonomous software agents carry out operational tasks. In most cases, this requires new tooling and new operational protocols.
Cisco’s future AI plans include continuing its central work in infrastructure provision for AI workloads. It’s also pursuing broader adoption of AI-ready networks, including next-gen wireless and unified management systems that will control systems across campus, branch, and cloud environments. The company is also expanding its software and platform investments, including its most recent acquisition (NeuralFabric), to help it build a more comprehensive software stack and product portfolio.
In summary, Cisco’s AI deployment strategy combines hardware, software, and service elements that embed AI into operations, giving organisations a route to production-grade systems. Its work can be found in large-scale infrastructure, systems for unified management, risk mitigation, and anywhere that connects distributed, cloud, and edge computing.
(Image source: Pixabay)
Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and co-located with other leading technology events. Click here for more information.
AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.
Artificial Intelligence
Combing the Rackspace blogfiles for operational AI pointers
In a recent blog output, Rackspace refers to the bottlenecks familiar to many readers: messy data, unclear ownership, governance gaps, and the cost of running models once they become part of production. The company frames them through the lens of service delivery, security operations, and cloud modernisation, which tells you where it is putting its own effort.
One of the clearest examples of operational AI inside Rackspace sits in its security business. In late January, the company described RAIDER (Rackspace Advanced Intelligence, Detection and Event Research) as a custom back-end platform built for its internal cyber defense centre. With security teams working amid many alerts and logs, standard detection engineering doesn’t scale if dependent on the manual writing of security rules. Rackspace says its RAIDER system unifies threat intelligence with detection engineering workflows and uses its AI Security Engine (RAISE) and LLMs to automate detection rule creation, generating detection criteria it describes as “platform-ready” in line with known frameworks such as MITRE ATT&CK. The company claims it’s cut detection development time by more than half and reduced mean time to detect and respond. This is just the kind of internal process change that matters.
The company also positions agentic AI as a way of taking the friction out of complex engineering programmes. A January post on modernising VMware environments on AWS describes a model in which AI agents handle data-intensive analysis and many repeating tasks, yet it keeps “architectural judgement, governance and business decisions” remain in the human domain. Rackspace presents this workflow as stopping senior engineers being sidelined into migration projects. The article states the target is to keep day two operations in scope – where many migration plans fail as teams discover they have modernised infrastructure but not operating practices.
Elsewhere the company sets out a picture of AI-supported operations where monitoring becomes more predictive, routine incidents are handled by bots and automation scripts, and telemetry (plus historical data) are used to spot patterns and, it turn, recommend fixes. This is conventional AIOps language, but it Rackspace is tying such language to managed services delivery, suggesting the company uses AI to reduce the cost of labour in operational pipelines in addition to the more familiar use of AI in customer-facing environments.
In a post describing AI-enabled operations, the company stresses the importance of focus strategy, governance and operating models. It specifies the machinery it needed to industrialise AI, such as choosing infrastructure based on whether workloads involve training, fine-tuning or inference. Many tasks are relatively lightweight and can run inference locally on existing hardware.
The company’s noted four recurring barriers to AI adoption, most notably that of fragmented and inconsistent data, and it recommends investment in integration and data management so models have consistent foundations. This is not an opinion unique to Rackspace, of course, but having it writ large by a technology-first, big player is illustrative of the issues faced by many enterprise-scale AI deployments.
A company of even greater size, Microsoft, is working to coordinate autonomous agents’ work across systems. Copilot has evolved into an orchestration layer, and in Microsoft’s ecosystem, multi-step task execution and broader model choice do exist. However, it’s noteworthy that Redmond is called out by Rackspace on the fact that productivity gains only arrive when identity, data access, and oversight are firmly ensconced into operations.
Rackspace’s near-term AI plan comprises of AI-assisted security engineering, agent-supported modernisation, and AI-augmented service management. Its future plans can perhaps be discerned in a January article published on the company’s blog that concerns private cloud AI trends. In it, the author argues inference economics and governance will drive architecture decisions well into 2026. It anticipates ‘bursty’ exploration in public clouds, while moving inference tasks into private clouds on the grounds of cost stability, and compliance. That’s a roadmap for operational AI grounded in budget and audit requirements, not novelty.
For decision-makers trying to accelerate their own deployments, the useful takeaway is that Rackspace has treats AI as an operational discipline. The concrete, published examples it gives are those that reduce cycle time in repeatable work. Readers may accept the company’s direction and still be wary of the company’s claimed metrics. The steps to take inside a growing business are to discover repeating processes, examine where strict oversight is necessary because of data governance, and where inference costs might be reduced by bringing some processing in-house.
(Image source: Pixabay)
Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and co-located with other leading technology events. Click here for more information.
AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.
Artificial Intelligence
Ronnie Sheth, CEO, SENEN Group: Why now is the time for enterprise AI to ‘get practical'
Before you set sail on your AI journey, always check the state of your data – because if there is one thing likely to sink your ship, it is data quality.
Gartner estimates that poor data quality costs organisations an average of $12.9 million each year in wasted resources and lost opportunities. That’s the bad news. The good news is that organisations are increasingly understanding the importance of their data quality – and less likely to fall into this trap.
That’s the view of Ronnie Sheth, CEO of AI strategy, execution and governance firm SENEN Group. The company focuses on data and AI advisory, operationalisation and literacy, and Sheth notes she has been in the data and AI space ‘ever since [she] was a corporate baby’, so there is plenty of real-world experience behind the viewpoint. There is also plenty of success; Sheth notes that her company has a 99.99% client repeat rate.
“If I were to be very practical, the one thing I’ve noticed is companies jump into adopting AI before they’re ready,” says Sheth. Companies, she notes, will have an executive direction insisting they adopt AI, but without a blueprint or roadmap to accompany it. The result may be impressive user numbers, but with no measurable outcome to back anything up.
Even as recently as 2024, Sheth saw many organisations struggling because their data was ‘nowhere where it needed to be.’ “Not even close,” she adds. Now, the conversation has turned more practical and strategic. Companies are realising this, and coming to SENEN Group initially to get help with their data, rather than wanting to adopt AI immediately.
“When companies like that come to us, the first course of order is really fixing their data,” says Sheth. “The next course of order is getting to their AI model. They are building a strong foundation for any AI initiative that comes after that.
“Once they fix their data, they can build as many AI models as they want, and they can have as many AI solutions as they want, and they will get accurate outputs because now they have a strong foundation,” Sheth adds.
With breadth and depth in expertise, SENEN Group allows organisations to right their course. Sheth notes the example of one customer who came to them wanting a data governance initiative. Ultimately, it was the data strategy which was needed – the why and how, the outcomes of what they were trying to do with their data – before adding in governance and providing a roadmap for an operating model. “They’ve moved from raw data to descriptive analytics, moving into predictive analytics, and now we’re actually setting up an AI strategy for them,” says Sheth.
It is this attitude and requirement for practical initiatives which will be the cornerstone of Sheth’s discussion at AI & Big Data Expo Global in London this week. “Now would be the time to get practical with AI, especially enterprise AI adoption, and not think about ‘look, we’re going to innovate, we’re going to do pilots, we’re going to experiment,’” says Sheth. “Now is not the time to do that. Now is the time to get practical, to get AI to value. This is the year to do that in the enterprise.”
Watch the full video conversation with Ronnie Sheth below:
Artificial Intelligence
Apptio: Why scaling intelligent automation requires financial rigour
Greg Holmes, Field CTO for EMEA at Apptio, an IBM company, argues that successfully scaling intelligent automation requires financial rigour.
The “build it and they will come” model of technology adoption often leaves a hole in the budget when applied to automation. Executives frequently find that successful pilot programmes do not translate into sustainable enterprise-wide deployments because initial financial modelling ignored the realities of production scaling.
“When we integrate FinOps capabilities with automation, we’re looking at a change from being very reactive on cost management to being very proactive around value engineering,” says Holmes.
This shifts the assessment criteria for technical leaders. Rather than waiting “months or years to assess whether things are getting value,” engineering teams can track resource consumption – such as cost per transaction or API call – “straight from the beginning.”
The unit economics of scaling intelligent automation
Innovation projects face a high mortality rate. Holmes notes that around 80 percent of new innovation projects fail, often because financial opacity during the pilot phase masks future liabilities.
“If a pilot demonstrates that automating a process saves, say, 100 hours a month, leadership thinks that’s really successful,” says Holmes. “But what it fails to track is that the pilot sometimes is running on over-provisioned infrastructure, so it looks like it performs really well. But you wouldn’t over-provision to that degree during a real production rollout.”
Moving that workload to production changes the calculus. The requirements for compute, storage, and data transfer increase. “API calls can multiply, exceptions and edge cases appear at volume that might have been out of scope for the pilot phase, and then support overheads just grow as well,” he adds.
To prevent this, organisations must track the marginal cost at scale. This involves monitoring unit economics, such as the cost per customer served or cost per transaction. If the cost per customer increases as the customer base grows, the business model is flawed.
Conversely, effective scaling should see these unit costs decrease. Holmes cites a case study from Liberty Mutual where the insurer was able to find around $2.5 million of savings by bringing in consumption metrics and “not just looking at labour hours that they were saving.”
However, financial accountability cannot sit solely with the finance department. Holmes advocates for putting governance “back in the hands of the developers into their development tools and workloads.”
Integration with infrastructure-as-code tools like HashiCorp Terraform and GitHub allows organisations to enforce policies during deployment. Teams can spin up resources programmatically with immediate cost estimates.
“Rather than deploying things and then fixing them up, which gets into the whole whack-a-mole kind of problem,” Holmes explains, companies can verify they are “deploying the right things at the right time.”
When scaling intelligent automation, tension often simmers between the CFO, who focuses on return on investment, and the Head of Automation, who tracks operational metrics like hours saved.
“This translation challenge is precisely what TBM (Technology Business Management) and Apptio are designed to solve,” says Holmes. “It’s having a common language between technology and finance and with the business.”
The TBM taxonomy provides a standardised framework to reconcile these views. It maps technical resources (such as compute, storage, and labour) into IT towers and further up to business capabilities. This structure translates technical inputs into business outputs.
“I don’t necessarily know what goes into all the IT layers underneath it,” Holmes says, describing the business user’s perspective. “But because we’ve got this taxonomy, I can get a detailed bill that tells me about my service consumption and precisely which costs are driving it to be more expensive as I consume more.”
Addressing legacy debt and budgeting for the long-term
Organisations burdened by legacy ERP systems face a binary choice: automation as a patch, or as a bridge to modernisation. Holmes warns that if a company is “just trying to mask inefficient processes and not redesign them,” they are merely “building up more technical debt.”
A total cost of ownership (TCO) approach helps determine the correct strategy. The Commonwealth Bank of Australia utilised a TCO model across 2,000 different applications – of various maturity stages – to assess their full lifecycle costs. This analysis included hidden costs such as infrastructure, labour, and the engineering time required to keep automation running.
“Just because of something’s legacy doesn’t mean you have to retire it,” says Holmes. “Some of those legacy systems are worth maintaining just because the value is so good.”
In other cases, calculating the cost of the automation wrappers required to keep an old system functional reveals a different reality. “Sometimes when you add up the TCO approach, and you’re including all these automation layers around it, you suddenly realise, the real cost of keeping that old system alive is not just the old system, it’s those extra layers,” Holmes argues.
Avoiding sticker shock requires a budgeting strategy that balances variable costs with long-term commitments. While variable costs (OPEX) offer flexibility, they can fluctuate wildly based on demand and engineering efficiency.
Holmes advises that longer-term visibility enables better investment decisions. Committing to specific technologies or platforms over a multi-year horizon allows organisations to negotiate economies of scale and standardise architecture.
“Because you’ve made those longer term commitments and you’ve standardised on different platforms and things like that, it makes it easier to build the right thing out for the long term,” Holmes says.
Combining tight management of variable costs with strategic commitments supports enterprises in scaling intelligent automation without the volatility that often derails transformation.
IBM is a key sponsor of this year’s Intelligent Automation Conference Global in London on 4-5 February 2026. Greg Holmes and other experts will be sharing their insights during the event. Be sure to check out the day one panel session, Scaling Intelligent Automation Successfully: Frameworks, Risks, and Real-World Lessons, to hear more from Holmes and swing by IBM’s booth at stand #362.
See also: Klarna backs Google UCP to power AI agent payments

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and is co-located with other leading technology events including the Cyber Security & Cloud Expo. Click here for more information.
AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.
-
Fintech6 months agoRace to Instant Onboarding Accelerates as FDIC OKs Pre‑filled Forms | PYMNTS.com
-
Cyber Security7 months agoHackers Use GitHub Repositories to Host Amadey Malware and Data Stealers, Bypassing Filters
-
Fintech6 months ago
DAT to Acquire Convoy Platform to Expand Freight-Matching Network’s Capabilities | PYMNTS.com
-
Fintech5 months agoID.me Raises $340 Million to Expand Digital Identity Solutions | PYMNTS.com
-
Artificial Intelligence7 months agoNothing Phone 3 review: flagship-ish
-
Fintech4 months agoTracking the Convergence of Payments and Digital Identity | PYMNTS.com
-
Artificial Intelligence7 months agoThe best Android phones
-
Fintech7 months agoIntuit Adds Agentic AI to Its Enterprise Suite | PYMNTS.com
