Connect with us

Artificial Intelligence

The best shows and movies to stream on Netflix in 2025

Published

on

Netflix has had an interesting year. Its ad tier, introduced last year, has grown significantly, and its live TV initiative has expanded to include not only weird one-offs like hot-dog-eating grudge matches but also WWE programming. Taking KPop Demon Hunters off Sony’s hands for the business equivalent of $200 in a potato chip bag also turned out to be a pretty smart move for Netflix. The animated feature about, well, demon-hunting K-pop stars, became the most watched movie in the platform’s history and a global cultural phenomenon in its own right. The sing-along theatrical release sold out, songs from the movie sat comfortably at the top of music charts for weeks, and we got Huntr/x in Fortnite and the Macy’s Thanksgiving Parade mere months after the movie’s release.

But KPop Demon Hunters wasn’t the streamer’s only quality offering this year. Here’s a list of Netflix’s best of 2025.

Sean Combs: The Reckoning

There are two life lessons to take away from this documentary: Don’t be a horrific abuser and never piss off a self-described petty man with cash to burn. This four-part docuseries, directed by Alex Stapleton and produced by Lifetime Achievement Fellow in the Hater Hall of Fame Curtis “50 Cent” Jackson, chronicles the rise of Sean “P Diddy” Combs from music video character actor, to hip-hop business mogul, to convicted criminal.

The documentary features new interviews from former associates, employees, and friends who allege everything from cheating business partners out of their share to having knowledge of if not outright arranging the hit that took Tupac Shakur’s life. This is not a “fun” watch, so heed the content warnings, but if you want a succinct accounting of where Combs came from and how the business of hip-hop can turn men into monsters, this is an informative overview.

There is vanishingly little I can say about KPop Demon Hunters’ brilliance that hasn’t already been said. So I’ll let what has been said speak for it:

  • Making KPop Demon Hunters sound magical meant finding the right harmonies
  • KPop Demon Hunters was this year’s biggest surprise, but can Netflix do it again?

Rian Johnson’s Knives Out series has once again delivered a sharply funny, intensely moving whodunit. Daniel Craig as Benoit Blanc drips southern charm, aided by an ensemble cast featuring Josh Brolin as a fiery Catholic priest and Glenn Close as his secretary. Josh O’Connor delivers some beautiful moments as a junior priest struggling to find meaning in his faith, creating interesting tension against Blanc’s cold, grim logic. With them working together, Wake Up Dead Man becomes a fun story that examines the purpose faith can have in our lives.

One thing director Guillermo del Toro is gonna do is make a luxurious, sumptuous-ass movie with over-the-top sets and costuming. But Frankenstein is not just a visual delight. Oscar Isaac as Victor Frankenstein and Jacob Elordi as his monster give incredible performances that are both grounded in the movie’s late Victorian aesthetic while resonating with the stories of today. A quote unquote learned man irresponsibly using technology to create something he doesn’t understand and in his arrogance tries to control that winds up destroying his life and others? It’s not that Frankenstein is any one allegory for today, it has multiple applications.

And while we have numerous Frankenstein adaptations, there’s nothing quite like watching GDT do it. You just know that man is gonna grab all the production designers, make-up artists, and costumers, give them some cash, and say essentially “Cook,” and damn if they didn’t do exactly that.

The Great British Baking Show

I live for The Great British Baking Show (known as The Great British Bake Off outside the US). When the sun starts setting at 4:30PM and seasonal affect starts disordering my life, I’m okay because I know that means it’s Baking Show season. This year, the show has done some interesting things with the format, trying new variations on the show’s technical challenge where bakers are tasked with making something with stripped-down directions. I wish the challenges weren’t so overly focused on sweets, but it’s always fun learning the absolutely bonkers names the Brits have for their pastries. There is no way in a logical world that an oatmeal bar like this should be called a flapjack — it doesn’t even flap! Honestly, yelling about how British English is Wrong is just as much fun as watching the amateur bakers themselves.

The first half of the final season of Stranger Things is out, and while we can quibble about whether or not it’s quality television, it is good for one specific reason: it is finally ending. The show started off really strong, telling a fun tale about kids saving the world from the adults that are trying to ruin it. But that kind of storytelling got lost in the near decade between the first season and now — even though the Duffer Brothers want us to believe that it’s only been four years since Will first went to the Upside Down. It’s okay that stories end, and I’m glad we’ve got the opportunity to end this show on a high note by returning focus to what made it so great in the first place — them meddling kids.

Squid Game is another one of Netflix’s tentpole hits that has come to an end this year. Gi-hun / Player 456 (Lee Jung-jae) has returned to Mr. Beast’s Murder Island to expose the organizers of the deadly games once and for all. He’s befriended another crop of desperate people willing to do whatever for life-changing amounts of cash and just like in the first two seasons it’s brutal to watch the games destroy them one by one.

Clocking in at just under 200 days, James Garfield has the second shortest term of a US president, and I was genuinely enthralled watching Death By Lightning chart his rise to the office and tragic fall via an assassin’s bullet. As with Frankenstein, Netflix is once again on time with a metaphor appropriate for current events. Death By Lightning takes a look at how incendiary political discourse, like the kind fomented against Garfield by his own party, can lead to violence.

But more than the prescient political commentary, the performances make this show. Michael Shannon imbues Garfield with a salt-of-the-earth quality that makes you root hard for him. Shea Whigham has entered his character actor villain era playing New York Senator Roscoe Conkling, and Matthew “Mr. Darcy / Tom Wambsgans” Macfadyen gives a heartbreaking performance playing Garfield’s assassin Charles Guiteau.

The show’s best moments come from Nick Offerman as Garfield’s reluctant vice president, Chester A. Arthur. Offerman as Arthur is regency-era Ron Swanson. Throughout most of the show’s four episodes, Offerman is either drunk, fighting, raving about sausages, or a combination of all three. That man is having a blast chewing the scenery in a top hat and mutton chops, and I would genuinely watch a whole White House sitcom with him as the star.

Follow topics and authors from this story to see more like this in your personalized homepage feed and to receive email updates.


Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Artificial Intelligence

Ronnie Sheth, CEO, SENEN Group: Why now is the time for enterprise AI to ‘get practical'

Published

on

Before you set sail on your AI journey, always check the state of your data – because if there is one thing likely to sink your ship, it is data quality.

Gartner estimates that poor data quality costs organisations an average of $12.9 million each year in wasted resources and lost opportunities. That’s the bad news. The good news is that organisations are increasingly understanding the importance of their data quality – and less likely to fall into this trap.

That’s the view of Ronnie Sheth, CEO of AI strategy, execution and governance firm SENEN Group. The company focuses on data and AI advisory, operationalisation and literacy, and Sheth notes she has been in the data and AI space ‘ever since [she] was a corporate baby’, so there is plenty of real-world experience behind the viewpoint. There is also plenty of success; Sheth notes that her company has a 99.99% client repeat rate.

“If I were to be very practical, the one thing I’ve noticed is companies jump into adopting AI before they’re ready,” says Sheth. Companies, she notes, will have an executive direction insisting they adopt AI, but without a blueprint or roadmap to accompany it. The result may be impressive user numbers, but with no measurable outcome to back anything up.

Even as recently as 2024, Sheth saw many organisations struggling because their data was ‘nowhere where it needed to be.’ “Not even close,” she adds. Now, the conversation has turned more practical and strategic. Companies are realising this, and coming to SENEN Group initially to get help with their data, rather than wanting to adopt AI immediately.

“When companies like that come to us, the first course of order is really fixing their data,” says Sheth. “The next course of order is getting to their AI model. They are building a strong foundation for any AI initiative that comes after that.

“Once they fix their data, they can build as many AI models as they want, and they can have as many AI solutions as they want, and they will get accurate outputs because now they have a strong foundation,” Sheth adds.

With breadth and depth in expertise, SENEN Group allows organisations to right their course. Sheth notes the example of one customer who came to them wanting a data governance initiative. Ultimately, it was the data strategy which was needed – the why and how, the outcomes of what they were trying to do with their data – before adding in governance and providing a roadmap for an operating model. “They’ve moved from raw data to descriptive analytics, moving into predictive analytics, and now we’re actually setting up an AI strategy for them,” says Sheth.

It is this attitude and requirement for practical initiatives which will be the cornerstone of Sheth’s discussion at AI & Big Data Expo Global in London this week. “Now would be the time to get practical with AI, especially enterprise AI adoption, and not think about ‘look, we’re going to innovate, we’re going to do pilots, we’re going to experiment,’” says Sheth. “Now is not the time to do that. Now is the time to get practical, to get AI to value. This is the year to do that in the enterprise.”

Watch the full video conversation with Ronnie Sheth below:

Continue Reading

Artificial Intelligence

Apptio: Why scaling intelligent automation requires financial rigour

Published

on

Greg Holmes, Field CTO for EMEA at Apptio, an IBM company, argues that successfully scaling intelligent automation requires financial rigour.

The “build it and they will come” model of technology adoption often leaves a hole in the budget when applied to automation. Executives frequently find that successful pilot programmes do not translate into sustainable enterprise-wide deployments because initial financial modelling ignored the realities of production scaling.

“When we integrate FinOps capabilities with automation, we’re looking at a change from being very reactive on cost management to being very proactive around value engineering,” says Holmes.

This shifts the assessment criteria for technical leaders. Rather than waiting “months or years to assess whether things are getting value,” engineering teams can track resource consumption – such as cost per transaction or API call – “straight from the beginning.”

The unit economics of scaling intelligent automation

Innovation projects face a high mortality rate. Holmes notes that around 80 percent of new innovation projects fail, often because financial opacity during the pilot phase masks future liabilities.

“If a pilot demonstrates that automating a process saves, say, 100 hours a month, leadership thinks that’s really successful,” says Holmes. “But what it fails to track is that the pilot sometimes is running on over-provisioned infrastructure, so it looks like it performs really well. But you wouldn’t over-provision to that degree during a real production rollout.”

Moving that workload to production changes the calculus. The requirements for compute, storage, and data transfer increase. “API calls can multiply, exceptions and edge cases appear at volume that might have been out of scope for the pilot phase, and then support overheads just grow as well,” he adds.

To prevent this, organisations must track the marginal cost at scale. This involves monitoring unit economics, such as the cost per customer served or cost per transaction. If the cost per customer increases as the customer base grows, the business model is flawed.

Conversely, effective scaling should see these unit costs decrease. Holmes cites a case study from Liberty Mutual where the insurer was able to find around $2.5 million of savings by bringing in consumption metrics and “not just looking at labour hours that they were saving.”

However, financial accountability cannot sit solely with the finance department. Holmes advocates for putting governance “back in the hands of the developers into their development tools and workloads.”

Integration with infrastructure-as-code tools like HashiCorp Terraform and GitHub allows organisations to enforce policies during deployment. Teams can spin up resources programmatically with immediate cost estimates.

“Rather than deploying things and then fixing them up, which gets into the whole whack-a-mole kind of problem,” Holmes explains, companies can verify they are “deploying the right things at the right time.”

When scaling intelligent automation, tension often simmers between the CFO, who focuses on return on investment, and the Head of Automation, who tracks operational metrics like hours saved.

“This translation challenge is precisely what TBM (Technology Business Management) and Apptio are designed to solve,” says Holmes. “It’s having a common language between technology and finance and with the business.”

The TBM taxonomy provides a standardised framework to reconcile these views. It maps technical resources (such as compute, storage, and labour) into IT towers and further up to business capabilities. This structure translates technical inputs into business outputs.

“I don’t necessarily know what goes into all the IT layers underneath it,” Holmes says, describing the business user’s perspective. “But because we’ve got this taxonomy, I can get a detailed bill that tells me about my service consumption and precisely which costs are driving  it to be more expensive as I consume more.”

Addressing legacy debt and budgeting for the long-term

Organisations burdened by legacy ERP systems face a binary choice: automation as a patch, or as a bridge to modernisation. Holmes warns that if a company is “just trying to mask inefficient processes and not redesign them,” they are merely “building up more technical debt.”

A total cost of ownership (TCO) approach helps determine the correct strategy. The Commonwealth Bank of Australia utilised a TCO model across 2,000 different applications – of various maturity stages – to assess their full lifecycle costs. This analysis included hidden costs such as infrastructure, labour, and the engineering time required to keep automation running.

“Just because of something’s legacy doesn’t mean you have to retire it,” says Holmes. “Some of those legacy systems are worth maintaining just because the value is so good.”

In other cases, calculating the cost of the automation wrappers required to keep an old system functional reveals a different reality. “Sometimes when you add up the TCO approach, and you’re including all these automation layers around it, you suddenly realise, the real cost of keeping that old system alive is not just the old system, it’s those extra layers,” Holmes argues.

Avoiding sticker shock requires a budgeting strategy that balances variable costs with long-term commitments. While variable costs (OPEX) offer flexibility, they can fluctuate wildly based on demand and engineering efficiency.

Holmes advises that longer-term visibility enables better investment decisions. Committing to specific technologies or platforms over a multi-year horizon allows organisations to negotiate economies of scale and standardise architecture.

“Because you’ve made those longer term commitments and you’ve standardised on different platforms and things like that, it makes it easier to build the right thing out for the long term,” Holmes says.

Combining tight management of variable costs with strategic commitments supports enterprises in scaling intelligent automation without the volatility that often derails transformation.

IBM is a key sponsor of this year’s Intelligent Automation Conference Global in London on 4-5 February 2026. Greg Holmes and other experts will be sharing their insights during the event. Be sure to check out the day one panel session, Scaling Intelligent Automation Successfully: Frameworks, Risks, and Real-World Lessons, to hear more from Holmes and swing by IBM’s booth at stand #362.

See also: Klarna backs Google UCP to power AI agent payments

Banner for AI & Big Data Expo by TechEx events.

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and is co-located with other leading technology events including the Cyber Security & Cloud Expo. Click here for more information.

AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.

Continue Reading

Artificial Intelligence

FedEx tests how far AI can go in tracking and returns management

Published

on

FedEx is using AI to change how package tracking and returns work for large enterprise shippers. For companies moving high volumes of goods, tracking no longer ends when a package leaves the warehouse. Customers expect real-time updates, flexible delivery options, and returns that do not turn into support tickets or delays.

That pressure is pushing logistics firms to rethink how tracking and returns operate at scale, especially across complex supply chains.

This is where artificial intelligence is starting to move from pilot projects into daily operations.

FedEx plans to roll out AI-powered tracking and returns tools designed for enterprise shippers, according to a report by PYMNTS. The tools are aimed at automating routine customer service tasks, improving visibility into shipments, and reducing friction when packages need to be rerouted or sent back.

Rather than focusing on consumer-facing chatbots, the effort centres on operational workflows that sit behind the scenes. These are the systems enterprise customers rely on to manage exceptions, returns, and delivery changes without manual intervention.

How FedEx is applying AI to package tracking

Traditional tracking systems tell customers where a package is and when it might arrive. AI-powered tracking takes a step further by utilising historical delivery data, traffic patterns, weather conditions, and network constraints to flag potential delays before they happen.

According to the PYMNTS report, FedEx’s AI tools are designed to help enterprise shippers anticipate issues earlier in the delivery process. Instead of reacting to missed delivery windows, shippers may be able to reroute packages or notify customers ahead of time.

For businesses that ship thousands of parcels per day, that shift matters. Small improvements in prediction accuracy can reduce support calls, lower refund rates, and improve customer trust, particularly in retail, healthcare, and manufacturing supply chains.

This approach also reflects a broader trend in enterprise software, in which AI is being embedded into existing systems rather than introduced as standalone tools. The goal is not to replace logistics teams, but to minimise the number of manual decisions they need to make.

Returns as an operational problem, not a customer issue

Returns are one of the most expensive parts of logistics. For enterprise shippers, particularly those in e-commerce, returns affect warehouse capacity, inventory planning, and transportation costs.

According to PYMNTS, FedEx’s AI-enabled returns tools aim to automate parts of the returns process, including label generation, routing decisions, and status updates. Companies that use AI to determine the most efficient return path may be able to reduce delays and avoid returning things to the wrong facility.

This is less about convenience and more about operational discipline. Returns that sit idle or move through the wrong channel create cost and uncertainty across the supply chain. AI systems trained on past return patterns can help standardise decisions that were previously handled case by case.

For enterprise customers, this type of automation supports scale. As return volumes fluctuate, especially during peak seasons, systems that adjust automatically reduce the need for temporary staffing or manual overrides.

What FedEx’s AI tracking approach says about enterprise adoption

What stands out in FedEx’s approach is how narrowly focused the AI use case is. There are no broad claims about transformation or reinvention. The emphasis is on reducing friction in processes that already exist.

This mirrors how other large organisations are adopting AI internally. In a separate context, Microsoft described a similar pattern in its article. The company outlined how AI tools were rolled out gradually, with clear limits, governance rules, and feedback loops.

While Microsoft’s case focused on knowledge work and FedEx’s on logistics operations, the underlying lesson is the same. AI adoption tends to work best when applied to specific activities with measurable results rather than broad promises of efficiency.

For logistics firms, those advantages include fewer delivery exceptions, lower return handling costs, and better coordination between shipping partners and enterprise clients.

What this signals for enterprise customers

For end-user companies, FedEx’s move signals that logistics providers are investing in AI as a way to support more complex shipping demands. As supply chains become more distributed, visibility and predictability become harder to maintain without automation.

AI-driven tracking and returns could also change how businesses measure logistics performance. Companies may focus less on delivery speed and more on how quickly issues are recognised and resolved.

That shift could influence procurement decisions, contract structures, and service-level agreements. Enterprise customers may start asking not just where a shipment is, but how well a provider anticipates problems.

FedEx’s plans reflect a quieter phase of enterprise AI adoption. The focus is less on experimentation and more on integration. These systems are not designed to draw attention but to reduce noise in operations that customers only notice when something goes wrong.

(Photo by Liam Kevan)

See also: PepsiCo is using AI to rethink how factories are designed and updated

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and is co-located with other leading technology events, click here for more information.

AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.

Continue Reading

Trending