Connect with us

Artificial Intelligence

A new old idea about video stores

Published

on

Hi, friends! Welcome to Installer No. 109, your guide to the best and Verge-iest stuff in the world. (If you’re new here, welcome, hope you’re staying warm, and also you can read all the old editions at the Installer homepage.)

This week, I’ve been reading about Google Maps and shopaganda and life as a pop star, finally getting to watch F1 now that it’s streaming, rewatching the first two Avatars ahead of the next one’s release, pretending the new Taylor Swift tour doc is a reasonable replacement for actually seeing the tour, buying a bunch of Ikea smart buttons now that they’re on sale in the US, playing with the excellent new Obsidian update for mobile devices, and spending altogether too much time trying to figure out why my house is so cold.

I also have for you a fun new source of movies to watch, a game to play this holiday season, a new speaker worth a listen, and much more.

And I have a question, looking ahead to the last Installer of the year: What’s your favorite new thing from this year? It doesn’t have to be new this year, just new to you. (And you don’t have to pick your one favorite forever, just hit me with something new you loved this year.) I want to hear about books you discovered, podcasts you’re into, decade-old games you’re loving, things that made your house or office or whatever better, anything and everything is fair game. I’ll share mine if you share yours — email me at installer@theverge.com, find me on Threads at @imdavidpierce, or message me on Signal at @davidpierce.11.

All right, lots of stuff this week! Let’s go.

(As always, the best part of Installer is your ideas and tips. What are you playing / reading / watching / listening to / cuddling up with by the fire this week? Tell me everything: installer@theverge.com. And if you know someone else who might enjoy Installer, forward it to them and tell them to subscribe here.)

  • The Letterboxd Video Store. A tightly curated set of movies to rent, filled with stuff Letterboxd knows people want to see but that you almost certainly won’t find anywhere else. Like all things Letterboxd, it’s all a bit high-minded, but I love this idea and suspect I will check it often. Perfect amount of stuff in there, too.
  • Skate Story. A late-breaking contender for the best game of 2025! You’re a demon, you skate. And skate. And skate. A lot of reviews say the controls take a little getting used to, but that they give way to something that feels great and looks spectacular.
  • The iFixit app. I can’t say I’m shocked that iFixit’s AI bot, FixBot, isn’t quite up to the task of automatically sussing out how to fix all your gadgets. But that’s fine; I’ll just be using this new iOS and Android app as a library of manuals and repair guides. Plus, the built-in battery monitor for your phone is extremely clever.
  • Darkroom 7.0. I totally forgot about Darkroom! It has long been one of the best photo editors for Apple devices, and the new version cleans up the user experience a bunch while also adding some retro-film effects and some high-end video features. Also: Being able to zoom all the way down to the individual pixel is pretty wild.
  • Google Photos. On the other end of the professional spectrum, the Google Photos app just got a bunch of CapCut-style video editing features along with some better tools for making highlight reels and slideshows. I’m suddenly tempted to make a lot of stupid year-in-review stuff to send to my friends.
  • Kill Bill: The Whole Bloody Affair. I’m a sucker for a weird re-edit of a movie, so this is extremely my jam: two Kill Bill movies turned into the single, 4.5-hour bloodfest they were apparently always supposed to be. Apparently it’s a totally different story now! This feels like the best possible use of a weekend afternoon in a movie theater.
  • The Wiim Sound Lite. From one of the Installerverse’s favorite audio brands comes a new $229 portable speaker that looks like a strong competitor to Sonos’ new gear. (Or a HomePod, I guess.) If I were starting a home audio system right now, I’d probably start with Wiim.
  • Google Disco. An experimental new browser based on a weird and novel idea: turning collections of tabs into AI-generated, one-off web apps. I don’t expect Disco itself to ever leave Google Labs, but there’s something awfully futuristic in here.

Raffi Chilingaryan’s Spotted in Prod has long been one of my favorite sites for finding cool design and product touches from around the web. (I feel like, if you’re an app developer, your goal should be to make something weird and cool enough to catch Raffi’s eye.) Raffi’s also a designer and developer. He says right now he’s working on two iOS apps, a Strava competitor called Runbuds and a super clever alarm app called Shift that is designed to help you wake up earlier.

That’s all well and good, but my personal favorite Raffi thing is his new personal website, which includes an actual interactive version of his phone, so you can click around his homescreen and see into his apps. Dude took the whole “show us your homescreen” and just put me to shame on it. (Also, it’s a .zip domain, which I kind of love for a personal site?)

Anyway, all I have for you is a humble screenshot, but here’s Raffi’s homescreen, plus some info on the apps he uses and why:

The phone: iPhone 15 Pro.

The wallpaper: Solid gray background.

The apps: Retro, (Not Boring) Camera, Google Maps, Photos, Claude, Safari, Apple Notes.

I have my apps organized into 4 folders (money, work, social, vibes), but that’s a bit boring so I’ll break it out like this:

  • TestFlights you should keep an eye on: Arena is a community of curious internet folks that I’ve long wanted to immerse myself into but only once the iOS build got to its current level did I find that easy to do. Net is a promising email startup that uses an AI card stack to make flipping through your emails a breeze with impeccable UX.
  • Apps that I will shill till I die: Retro is a weekly photo journal that inspires me to take more photos and lets you send POSTCARDS to your friends & family. (Not Boring) Camera is a gorgeous skeuomorphic camera with really nice presets. Bump is Find My Friends for Gen Z. Radio Garden lets you explore the world through local radio streams. Particle is an amazing AI native news app with super fluid UX. Mercury is the most lovely fintech product for both businesses and now personal banking — I hope they take over the world.

I also asked Raffi to share a few things he’s into right now. Here’s what he sent back:

  • TBPN & Stratechery podcasts.
  • Discovering creative developers and design engineers who showcase their work on tech Twitter.
  • Using Claude Code to ship iOS apps as someone without a formal background in software engineering.
  • The resurgence of Pokémon and the Trading Card Game app.

Here’s what the Installer community is into this week. I want to know what you’re into right now as well! Email installer@theverge.com or message me on Signal — @davidpierce.11 — with your recommendations for anything and everything, and we’ll feature some of our favorites here every week. For even more great recommendations, check out the replies to this post on Threads and this post on Bluesky.

“Now that finals are over I have been diving into Ghost of Yotei. Crazy beautiful game.” — Jeremy

“Finally reading “The Anthropocene Reviewed by John Green. Despite John living an entirely different life than me, his experiences and understanding of the world possess so many similarities to mine. I give it five stars.” — Christopher

“I feel like everyone is sleeping on Amazon Luna, the cloud stream gaming platform that Amazon includes with its yearly subscription. It consistently has A+ games on it. I’m currently addicted to the newest Bethesda Indiana Jones game… I hooked up my PS4 controller and am playing one of the greatest games of the past few years at no extra cost.” — Alex

Audible had an insane three months for $1 deal, so I’ve been getting back into audiobooks while I do chores and commute. Currently listening to / reading Alchemised by SenLinYu and it’s fantastic.” — Colin

“Got myself a Teenage Engineering PO-12 drum machine on a rare sale. What a glorious little device. Lovely design, and hours of music fun, even for a complete amateur like myself. Plus – it even has a headphone jack! That said – I kind of wish that I’d gotten the PO-20 instead.” —

StoneBlock 4, an amazing Minecraft modpack, is ruining all my productivity this week.” — Anne

“Yesterday I watched a badass Polish dude ski down Mt. Everest without oxygen. The feat is unbelievable, but I still think about the incredible footage.” — Denim

“I’m OBSESSED with the Xbloom robotic barista machine I’ve owned for a few weeks now. It’s basically like having a barista on demand 24/7 – if you love drip coffee this is an endgame coffee machine.” — Andrew

“+1 for Skate Story. Also, the OST… 👌” — Andy

I spent a bunch of time this week learning about Model Context Protocol, which is one of those things that most people will never think about but might be crucial to how technology works going forward. The MCP story is fascinating, but if you just want to quickly understand how the protocol works, and why it’s so important to the whole supposed AI-based future of everything, you should watch this 20-minute video. Greg Isenberg and Ras Mic walk through the whole stack at the perfect level of complexity, and with visuals that actually help (unlike so many videos I watched this week). If every educational video on YouTube were like this one, I’d be a much smarter person.

One more Installer to come this year. See you next week!

Follow topics and authors from this story to see more like this in your personalized homepage feed and to receive email updates.


Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Artificial Intelligence

Ronnie Sheth, CEO, SENEN Group: Why now is the time for enterprise AI to ‘get practical'

Published

on

Before you set sail on your AI journey, always check the state of your data – because if there is one thing likely to sink your ship, it is data quality.

Gartner estimates that poor data quality costs organisations an average of $12.9 million each year in wasted resources and lost opportunities. That’s the bad news. The good news is that organisations are increasingly understanding the importance of their data quality – and less likely to fall into this trap.

That’s the view of Ronnie Sheth, CEO of AI strategy, execution and governance firm SENEN Group. The company focuses on data and AI advisory, operationalisation and literacy, and Sheth notes she has been in the data and AI space ‘ever since [she] was a corporate baby’, so there is plenty of real-world experience behind the viewpoint. There is also plenty of success; Sheth notes that her company has a 99.99% client repeat rate.

“If I were to be very practical, the one thing I’ve noticed is companies jump into adopting AI before they’re ready,” says Sheth. Companies, she notes, will have an executive direction insisting they adopt AI, but without a blueprint or roadmap to accompany it. The result may be impressive user numbers, but with no measurable outcome to back anything up.

Even as recently as 2024, Sheth saw many organisations struggling because their data was ‘nowhere where it needed to be.’ “Not even close,” she adds. Now, the conversation has turned more practical and strategic. Companies are realising this, and coming to SENEN Group initially to get help with their data, rather than wanting to adopt AI immediately.

“When companies like that come to us, the first course of order is really fixing their data,” says Sheth. “The next course of order is getting to their AI model. They are building a strong foundation for any AI initiative that comes after that.

“Once they fix their data, they can build as many AI models as they want, and they can have as many AI solutions as they want, and they will get accurate outputs because now they have a strong foundation,” Sheth adds.

With breadth and depth in expertise, SENEN Group allows organisations to right their course. Sheth notes the example of one customer who came to them wanting a data governance initiative. Ultimately, it was the data strategy which was needed – the why and how, the outcomes of what they were trying to do with their data – before adding in governance and providing a roadmap for an operating model. “They’ve moved from raw data to descriptive analytics, moving into predictive analytics, and now we’re actually setting up an AI strategy for them,” says Sheth.

It is this attitude and requirement for practical initiatives which will be the cornerstone of Sheth’s discussion at AI & Big Data Expo Global in London this week. “Now would be the time to get practical with AI, especially enterprise AI adoption, and not think about ‘look, we’re going to innovate, we’re going to do pilots, we’re going to experiment,’” says Sheth. “Now is not the time to do that. Now is the time to get practical, to get AI to value. This is the year to do that in the enterprise.”

Watch the full video conversation with Ronnie Sheth below:

Continue Reading

Artificial Intelligence

Apptio: Why scaling intelligent automation requires financial rigour

Published

on

Greg Holmes, Field CTO for EMEA at Apptio, an IBM company, argues that successfully scaling intelligent automation requires financial rigour.

The “build it and they will come” model of technology adoption often leaves a hole in the budget when applied to automation. Executives frequently find that successful pilot programmes do not translate into sustainable enterprise-wide deployments because initial financial modelling ignored the realities of production scaling.

“When we integrate FinOps capabilities with automation, we’re looking at a change from being very reactive on cost management to being very proactive around value engineering,” says Holmes.

This shifts the assessment criteria for technical leaders. Rather than waiting “months or years to assess whether things are getting value,” engineering teams can track resource consumption – such as cost per transaction or API call – “straight from the beginning.”

The unit economics of scaling intelligent automation

Innovation projects face a high mortality rate. Holmes notes that around 80 percent of new innovation projects fail, often because financial opacity during the pilot phase masks future liabilities.

“If a pilot demonstrates that automating a process saves, say, 100 hours a month, leadership thinks that’s really successful,” says Holmes. “But what it fails to track is that the pilot sometimes is running on over-provisioned infrastructure, so it looks like it performs really well. But you wouldn’t over-provision to that degree during a real production rollout.”

Moving that workload to production changes the calculus. The requirements for compute, storage, and data transfer increase. “API calls can multiply, exceptions and edge cases appear at volume that might have been out of scope for the pilot phase, and then support overheads just grow as well,” he adds.

To prevent this, organisations must track the marginal cost at scale. This involves monitoring unit economics, such as the cost per customer served or cost per transaction. If the cost per customer increases as the customer base grows, the business model is flawed.

Conversely, effective scaling should see these unit costs decrease. Holmes cites a case study from Liberty Mutual where the insurer was able to find around $2.5 million of savings by bringing in consumption metrics and “not just looking at labour hours that they were saving.”

However, financial accountability cannot sit solely with the finance department. Holmes advocates for putting governance “back in the hands of the developers into their development tools and workloads.”

Integration with infrastructure-as-code tools like HashiCorp Terraform and GitHub allows organisations to enforce policies during deployment. Teams can spin up resources programmatically with immediate cost estimates.

“Rather than deploying things and then fixing them up, which gets into the whole whack-a-mole kind of problem,” Holmes explains, companies can verify they are “deploying the right things at the right time.”

When scaling intelligent automation, tension often simmers between the CFO, who focuses on return on investment, and the Head of Automation, who tracks operational metrics like hours saved.

“This translation challenge is precisely what TBM (Technology Business Management) and Apptio are designed to solve,” says Holmes. “It’s having a common language between technology and finance and with the business.”

The TBM taxonomy provides a standardised framework to reconcile these views. It maps technical resources (such as compute, storage, and labour) into IT towers and further up to business capabilities. This structure translates technical inputs into business outputs.

“I don’t necessarily know what goes into all the IT layers underneath it,” Holmes says, describing the business user’s perspective. “But because we’ve got this taxonomy, I can get a detailed bill that tells me about my service consumption and precisely which costs are driving  it to be more expensive as I consume more.”

Addressing legacy debt and budgeting for the long-term

Organisations burdened by legacy ERP systems face a binary choice: automation as a patch, or as a bridge to modernisation. Holmes warns that if a company is “just trying to mask inefficient processes and not redesign them,” they are merely “building up more technical debt.”

A total cost of ownership (TCO) approach helps determine the correct strategy. The Commonwealth Bank of Australia utilised a TCO model across 2,000 different applications – of various maturity stages – to assess their full lifecycle costs. This analysis included hidden costs such as infrastructure, labour, and the engineering time required to keep automation running.

“Just because of something’s legacy doesn’t mean you have to retire it,” says Holmes. “Some of those legacy systems are worth maintaining just because the value is so good.”

In other cases, calculating the cost of the automation wrappers required to keep an old system functional reveals a different reality. “Sometimes when you add up the TCO approach, and you’re including all these automation layers around it, you suddenly realise, the real cost of keeping that old system alive is not just the old system, it’s those extra layers,” Holmes argues.

Avoiding sticker shock requires a budgeting strategy that balances variable costs with long-term commitments. While variable costs (OPEX) offer flexibility, they can fluctuate wildly based on demand and engineering efficiency.

Holmes advises that longer-term visibility enables better investment decisions. Committing to specific technologies or platforms over a multi-year horizon allows organisations to negotiate economies of scale and standardise architecture.

“Because you’ve made those longer term commitments and you’ve standardised on different platforms and things like that, it makes it easier to build the right thing out for the long term,” Holmes says.

Combining tight management of variable costs with strategic commitments supports enterprises in scaling intelligent automation without the volatility that often derails transformation.

IBM is a key sponsor of this year’s Intelligent Automation Conference Global in London on 4-5 February 2026. Greg Holmes and other experts will be sharing their insights during the event. Be sure to check out the day one panel session, Scaling Intelligent Automation Successfully: Frameworks, Risks, and Real-World Lessons, to hear more from Holmes and swing by IBM’s booth at stand #362.

See also: Klarna backs Google UCP to power AI agent payments

Banner for AI & Big Data Expo by TechEx events.

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and is co-located with other leading technology events including the Cyber Security & Cloud Expo. Click here for more information.

AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.

Continue Reading

Artificial Intelligence

FedEx tests how far AI can go in tracking and returns management

Published

on

FedEx is using AI to change how package tracking and returns work for large enterprise shippers. For companies moving high volumes of goods, tracking no longer ends when a package leaves the warehouse. Customers expect real-time updates, flexible delivery options, and returns that do not turn into support tickets or delays.

That pressure is pushing logistics firms to rethink how tracking and returns operate at scale, especially across complex supply chains.

This is where artificial intelligence is starting to move from pilot projects into daily operations.

FedEx plans to roll out AI-powered tracking and returns tools designed for enterprise shippers, according to a report by PYMNTS. The tools are aimed at automating routine customer service tasks, improving visibility into shipments, and reducing friction when packages need to be rerouted or sent back.

Rather than focusing on consumer-facing chatbots, the effort centres on operational workflows that sit behind the scenes. These are the systems enterprise customers rely on to manage exceptions, returns, and delivery changes without manual intervention.

How FedEx is applying AI to package tracking

Traditional tracking systems tell customers where a package is and when it might arrive. AI-powered tracking takes a step further by utilising historical delivery data, traffic patterns, weather conditions, and network constraints to flag potential delays before they happen.

According to the PYMNTS report, FedEx’s AI tools are designed to help enterprise shippers anticipate issues earlier in the delivery process. Instead of reacting to missed delivery windows, shippers may be able to reroute packages or notify customers ahead of time.

For businesses that ship thousands of parcels per day, that shift matters. Small improvements in prediction accuracy can reduce support calls, lower refund rates, and improve customer trust, particularly in retail, healthcare, and manufacturing supply chains.

This approach also reflects a broader trend in enterprise software, in which AI is being embedded into existing systems rather than introduced as standalone tools. The goal is not to replace logistics teams, but to minimise the number of manual decisions they need to make.

Returns as an operational problem, not a customer issue

Returns are one of the most expensive parts of logistics. For enterprise shippers, particularly those in e-commerce, returns affect warehouse capacity, inventory planning, and transportation costs.

According to PYMNTS, FedEx’s AI-enabled returns tools aim to automate parts of the returns process, including label generation, routing decisions, and status updates. Companies that use AI to determine the most efficient return path may be able to reduce delays and avoid returning things to the wrong facility.

This is less about convenience and more about operational discipline. Returns that sit idle or move through the wrong channel create cost and uncertainty across the supply chain. AI systems trained on past return patterns can help standardise decisions that were previously handled case by case.

For enterprise customers, this type of automation supports scale. As return volumes fluctuate, especially during peak seasons, systems that adjust automatically reduce the need for temporary staffing or manual overrides.

What FedEx’s AI tracking approach says about enterprise adoption

What stands out in FedEx’s approach is how narrowly focused the AI use case is. There are no broad claims about transformation or reinvention. The emphasis is on reducing friction in processes that already exist.

This mirrors how other large organisations are adopting AI internally. In a separate context, Microsoft described a similar pattern in its article. The company outlined how AI tools were rolled out gradually, with clear limits, governance rules, and feedback loops.

While Microsoft’s case focused on knowledge work and FedEx’s on logistics operations, the underlying lesson is the same. AI adoption tends to work best when applied to specific activities with measurable results rather than broad promises of efficiency.

For logistics firms, those advantages include fewer delivery exceptions, lower return handling costs, and better coordination between shipping partners and enterprise clients.

What this signals for enterprise customers

For end-user companies, FedEx’s move signals that logistics providers are investing in AI as a way to support more complex shipping demands. As supply chains become more distributed, visibility and predictability become harder to maintain without automation.

AI-driven tracking and returns could also change how businesses measure logistics performance. Companies may focus less on delivery speed and more on how quickly issues are recognised and resolved.

That shift could influence procurement decisions, contract structures, and service-level agreements. Enterprise customers may start asking not just where a shipment is, but how well a provider anticipates problems.

FedEx’s plans reflect a quieter phase of enterprise AI adoption. The focus is less on experimentation and more on integration. These systems are not designed to draw attention but to reduce noise in operations that customers only notice when something goes wrong.

(Photo by Liam Kevan)

See also: PepsiCo is using AI to rethink how factories are designed and updated

Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and is co-located with other leading technology events, click here for more information.

AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.

Continue Reading

Trending