Artificial Intelligence
24/7 compliance monitoring: The AI advantage in data protection
Data protection compliance has evolved from a periodic checklist exercise to a continuous responsibility. With cyber threats emerging and regulatory requirements becoming increasingly stringent, organisations can’t afford to rely on manual compliance monitoring approaches. The advent of artificial intelligence has transformed the challenge, offering capabilities for continuous oversight and real-time protection of sensitive data.
The evolution of compliance monitoring
Traditional compliance monitoring is characterised by annual assessments and reactive responses to incidents. While this approach is sufficient for simpler regulatory environments, it falls short in addressing the complexities of modern data protection. The General Data Protection Regulation (GDPR), the Data Protection Act 2018, and emerging frameworks like the Digital Services Act demand compliance and demonstrable, ongoing adherence to data handling protocols.
The shift to continuous monitoring represents a change in how organisations approach compliance. Rather than periodic snapshots of compliance status, businesses are better off with real-time visibility in their security posture. The transformation has been driven by several factors: the increasing volume and velocity of data processing, the sophistication of cyber threats, and the evolution of regulatory expectations towards proactive rather than reactive compliance.
AI-powered continuous monitoring capabilities
Artificial intelligence brings several advantages to compliance monitoring that human-led processes cannot match. Machine learning algorithms can process vast quantities of data in real-time, identifying patterns and anomalies that would be difficult for human analysts to detect manually. Systems can simultaneously monitor multiple data streams, user activities, and system behaviours in all of an organisation’s digital infrastructure.
AI-powered monitoring systems excel at pattern recognition, learning from historical data to establish baselines of normal behaviour. When deviations occur – whether through unauthorised access attempts, unusual data transfers, or policy violations – they can immediately flag potential compliance breaches. The capability extends beyond simple rule-based detection; AI systems can identify subtle indicators that may suggest emerging compliance risks before they transform into actual violations.
AI systems can contextualise compliance events in broader organisational and regulatory frameworks. Rather than generating isolated alerts, intelligent monitoring platforms can assess the significance of events based on factors like data sensitivity, user roles, regulatory requirements, and potential business impact. Contextual awareness enables more targeted and effective compliance responses.
Real-time threat detection and response
The speed of AI-powered monitoring represents perhaps its most significant advantage over traditional approaches. While manual compliance reviews might detect violations up to days or weeks after they occur, AI systems can identify and respond to potential breaches in seconds or minutes. This rapid response capability is important to minimise the impact of data protection incidents and ensure swift remediation.
Real-time monitoring lets organisations implement dynamic compliance controls that adapt to changing circumstances. For instance, if AI systems detect unusual data access patterns that suggest potential unauthorised activity, they can trigger additional authentication requirements or temporarily restrict access to sensitive resources. A proactive approach can prevent compliance violations before they occur, rather than documenting them after the fact.
The integration of AI with automated response mechanisms further enhances protection capabilities. When potential violations are detected, systems can automatically initiate predefined response protocols, like isolating affected systems, notifying relevant personnel, or implementing emergency access controls. Automation helps ensure consistent and timely responses, regardless of when incidents occur or whether human operators are immediately available.
Comprehensive coverage across digital assets
Modern organisations operate complex digital ecosystems that span cloud services, on-premises infrastructure, mobile devices, and third-party applications. AI-powered compliance monitoring can provide unified oversight in diverse environments, helping ensure consistent protection standards regardless of where data resides or how it is processed.
Cloud environments, in particular, benefit from AI-driven monitoring. The dynamic nature of cloud infrastructure – with resources being created, modified, and destroyed continuously – makes manual compliance oversight difficult. AI systems can track configuration changes, monitor data flows, and ensure that security controls remain properly configured as environments evolve. This capability is important in maintaining compliance in cloud-centric business operations.
Additionally, AI can monitor compliance in the full data lifecycle, from collection and processing to storage and deletion. By implementing a compliance automation platform like Thoropass, organisations can help ensure that data handling practices are consistent with regulatory requirements throughout each stage of processing. Comprehensive coverage helps organisations maintain demonstrable compliance even as data volumes and processing complexity continue to grow.
Predictive analytics for compliance risk management
Beyond reactive monitoring, AI can provide predictive analytics that can identify potential compliance risks before they materialise. Analysing historical patterns, user behaviours, and system configurations lets AI systems predict scenarios that may lead to compliance violations. Predictive capability allows organisations to implement preventive measures and address vulnerabilities proactively.
Predictive analytics can also inform compliance strategy and resource allocation, and identifying areas of highest risk and predicting future compliance challenges helps organisations prioritise their security investments and compliance efforts. The strategic application of AI ensures that limited resources are directed towards the most dangerous areas of risk.
Regulatory reporting and documentation benefits
AI-powered monitoring systems perform well at generating comprehensive audit trails and compliance documentation. Systems can automatically collect, correlate, and present evidence of compliance activities in formats suitable for regulatory reporting. Such capability reduces the administrative burden associated with compliance documentation and helps ensure accuracy and completeness.
Automated reporting capabilities also enable more frequent and detailed compliance assessments. Rather than waiting for annual audits, organisations can generate real-time compliance reports that provide continuous visibility into their data protection posture. An ongoing assessment capability helps organisations identify and address compliance gaps more quickly, reducing the risk of regulatory violations.
The transition to AI-powered compliance monitoring represents a technological upgrade and signifies a shift towards more effective, efficient, and comprehensive data protection. As regulatory requirements evolve and cyber threats become more sophisticated, the ability to maintain continuous oversight of data protection compliance becomes not just advantageous, but essential. Organisations that adopt AI-driven capabilities position themselves to meet current compliance requirements and adapt successfully to tomorrow’s regulatory landscape.
Guest author: Sally Giles
Image source: Pexels
Artificial Intelligence
How Cisco builds smart systems for the AI era
Among the big players in technology, Cisco is one of the sector’s leaders that’s advancing operational deployments of AI internally to its own operations, and the tools it sells to its customers around the world. As a large company, its activities encompass many areas of the typical IT stack, including infrastructure, services, security, and the design of entire enterprise-scale networks.
Cisco’s internal teams use a blend of machine learning and agentic AI to help them improve their own service delivery and personalise user experiences for its customers. It’s built a shared AI fabric built on patterns of compute and networking that are the product of years spent checking and validating its systems – battle-hardened solutions it then has the confidence to offer to customers. The infrastructure in play relies on high-performance GPUs, of course, but it’s not just raw horse-power. The detail is in the careful integration between compute and network stacks used in model training and the quite different demands from the ongoing load of inference.
Having made its name as the de facto supplier of networking infrastructure for the enterprise, it comes as no shock that it’s in network automation that some of its better-known uses of AI finds their place. Automated configuration workflows and identity management combine into access solutions that are focused on rapid network deployments generated by natural language.
For organisations looking to develop into the next generation of AI users, Cisco has been rolling out hardware and orchestration tools that are aimed explicitly to support AI workloads. A recent collaboration with chip giant NVIDIA led to the emergence of a new line of switches and the Nexus Hyperfabric line of AI network controllers. These aim to simplify the deployment of the complex clusters needed for top-end, high-performance artificial intelligence clusters.
Cisco’s Secure AI Factory framework with partners like NVIDIA and Run:ai is aimed at production-grade AI pipelines. It uses distributed orchestration, GPU utilisation governance, Kubernetes microservice optimisation, and storage, under the umbrella product description Intersight. For more local deployments, Cisco Unified Edge brings all the necessary elements – compute, networking, security, and storage – close to where data gets generated and processed.
In environments where latency metrics are critically important, AI processing at the edge is the answer. But Cisco’s approach is not necessarily to offer dedicated IIoT-specific solutions. Instead, it tries to extend the operational models typically found in a data centre and applies the same technology (if not the same exact methodology) to edge sites. It’s like data centre-grade security policies and configurations available to remote installations. Having the same precepts and standards in cloud and edge mean that Cisco accredited engineers can manage and maintain data centres or small edge deployments using the same skills, accreditation, knowledge, and experience.
Security and risk management figure prominently in the Cisco AI narrative. Its Integrated AI Security and Safety Framework applies high standards of safety and security throughout the life-cycle of AI systems. It considers adversarial threats, supply chain weakness, the risk profiles of multi-agent interactions, and multi-modal vulnerabilities as issues that have to be addressed regardless of the nature or size of any deployment.
Cisco’s work on operational AI also reflects broader ecosystem conversations. The company markets products for organisations wanting to make the transition from generative to agentic AI, where autonomous software agents carry out operational tasks. In most cases, this requires new tooling and new operational protocols.
Cisco’s future AI plans include continuing its central work in infrastructure provision for AI workloads. It’s also pursuing broader adoption of AI-ready networks, including next-gen wireless and unified management systems that will control systems across campus, branch, and cloud environments. The company is also expanding its software and platform investments, including its most recent acquisition (NeuralFabric), to help it build a more comprehensive software stack and product portfolio.
In summary, Cisco’s AI deployment strategy combines hardware, software, and service elements that embed AI into operations, giving organisations a route to production-grade systems. Its work can be found in large-scale infrastructure, systems for unified management, risk mitigation, and anywhere that connects distributed, cloud, and edge computing.
(Image source: Pixabay)
Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and co-located with other leading technology events. Click here for more information.
AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.
Artificial Intelligence
Combing the Rackspace blogfiles for operational AI pointers
In a recent blog output, Rackspace refers to the bottlenecks familiar to many readers: messy data, unclear ownership, governance gaps, and the cost of running models once they become part of production. The company frames them through the lens of service delivery, security operations, and cloud modernisation, which tells you where it is putting its own effort.
One of the clearest examples of operational AI inside Rackspace sits in its security business. In late January, the company described RAIDER (Rackspace Advanced Intelligence, Detection and Event Research) as a custom back-end platform built for its internal cyber defense centre. With security teams working amid many alerts and logs, standard detection engineering doesn’t scale if dependent on the manual writing of security rules. Rackspace says its RAIDER system unifies threat intelligence with detection engineering workflows and uses its AI Security Engine (RAISE) and LLMs to automate detection rule creation, generating detection criteria it describes as “platform-ready” in line with known frameworks such as MITRE ATT&CK. The company claims it’s cut detection development time by more than half and reduced mean time to detect and respond. This is just the kind of internal process change that matters.
The company also positions agentic AI as a way of taking the friction out of complex engineering programmes. A January post on modernising VMware environments on AWS describes a model in which AI agents handle data-intensive analysis and many repeating tasks, yet it keeps “architectural judgement, governance and business decisions” remain in the human domain. Rackspace presents this workflow as stopping senior engineers being sidelined into migration projects. The article states the target is to keep day two operations in scope – where many migration plans fail as teams discover they have modernised infrastructure but not operating practices.
Elsewhere the company sets out a picture of AI-supported operations where monitoring becomes more predictive, routine incidents are handled by bots and automation scripts, and telemetry (plus historical data) are used to spot patterns and, it turn, recommend fixes. This is conventional AIOps language, but it Rackspace is tying such language to managed services delivery, suggesting the company uses AI to reduce the cost of labour in operational pipelines in addition to the more familiar use of AI in customer-facing environments.
In a post describing AI-enabled operations, the company stresses the importance of focus strategy, governance and operating models. It specifies the machinery it needed to industrialise AI, such as choosing infrastructure based on whether workloads involve training, fine-tuning or inference. Many tasks are relatively lightweight and can run inference locally on existing hardware.
The company’s noted four recurring barriers to AI adoption, most notably that of fragmented and inconsistent data, and it recommends investment in integration and data management so models have consistent foundations. This is not an opinion unique to Rackspace, of course, but having it writ large by a technology-first, big player is illustrative of the issues faced by many enterprise-scale AI deployments.
A company of even greater size, Microsoft, is working to coordinate autonomous agents’ work across systems. Copilot has evolved into an orchestration layer, and in Microsoft’s ecosystem, multi-step task execution and broader model choice do exist. However, it’s noteworthy that Redmond is called out by Rackspace on the fact that productivity gains only arrive when identity, data access, and oversight are firmly ensconced into operations.
Rackspace’s near-term AI plan comprises of AI-assisted security engineering, agent-supported modernisation, and AI-augmented service management. Its future plans can perhaps be discerned in a January article published on the company’s blog that concerns private cloud AI trends. In it, the author argues inference economics and governance will drive architecture decisions well into 2026. It anticipates ‘bursty’ exploration in public clouds, while moving inference tasks into private clouds on the grounds of cost stability, and compliance. That’s a roadmap for operational AI grounded in budget and audit requirements, not novelty.
For decision-makers trying to accelerate their own deployments, the useful takeaway is that Rackspace has treats AI as an operational discipline. The concrete, published examples it gives are those that reduce cycle time in repeatable work. Readers may accept the company’s direction and still be wary of the company’s claimed metrics. The steps to take inside a growing business are to discover repeating processes, examine where strict oversight is necessary because of data governance, and where inference costs might be reduced by bringing some processing in-house.
(Image source: Pixabay)
Want to learn more about AI and big data from industry leaders? Check out AI & Big Data Expo taking place in Amsterdam, California, and London. The comprehensive event is part of TechEx and co-located with other leading technology events. Click here for more information.
AI News is powered by TechForge Media. Explore other upcoming enterprise technology events and webinars here.
Artificial Intelligence
Ronnie Sheth, CEO, SENEN Group: Why now is the time for enterprise AI to ‘get practical'
Before you set sail on your AI journey, always check the state of your data – because if there is one thing likely to sink your ship, it is data quality.
Gartner estimates that poor data quality costs organisations an average of $12.9 million each year in wasted resources and lost opportunities. That’s the bad news. The good news is that organisations are increasingly understanding the importance of their data quality – and less likely to fall into this trap.
That’s the view of Ronnie Sheth, CEO of AI strategy, execution and governance firm SENEN Group. The company focuses on data and AI advisory, operationalisation and literacy, and Sheth notes she has been in the data and AI space ‘ever since [she] was a corporate baby’, so there is plenty of real-world experience behind the viewpoint. There is also plenty of success; Sheth notes that her company has a 99.99% client repeat rate.
“If I were to be very practical, the one thing I’ve noticed is companies jump into adopting AI before they’re ready,” says Sheth. Companies, she notes, will have an executive direction insisting they adopt AI, but without a blueprint or roadmap to accompany it. The result may be impressive user numbers, but with no measurable outcome to back anything up.
Even as recently as 2024, Sheth saw many organisations struggling because their data was ‘nowhere where it needed to be.’ “Not even close,” she adds. Now, the conversation has turned more practical and strategic. Companies are realising this, and coming to SENEN Group initially to get help with their data, rather than wanting to adopt AI immediately.
“When companies like that come to us, the first course of order is really fixing their data,” says Sheth. “The next course of order is getting to their AI model. They are building a strong foundation for any AI initiative that comes after that.
“Once they fix their data, they can build as many AI models as they want, and they can have as many AI solutions as they want, and they will get accurate outputs because now they have a strong foundation,” Sheth adds.
With breadth and depth in expertise, SENEN Group allows organisations to right their course. Sheth notes the example of one customer who came to them wanting a data governance initiative. Ultimately, it was the data strategy which was needed – the why and how, the outcomes of what they were trying to do with their data – before adding in governance and providing a roadmap for an operating model. “They’ve moved from raw data to descriptive analytics, moving into predictive analytics, and now we’re actually setting up an AI strategy for them,” says Sheth.
It is this attitude and requirement for practical initiatives which will be the cornerstone of Sheth’s discussion at AI & Big Data Expo Global in London this week. “Now would be the time to get practical with AI, especially enterprise AI adoption, and not think about ‘look, we’re going to innovate, we’re going to do pilots, we’re going to experiment,’” says Sheth. “Now is not the time to do that. Now is the time to get practical, to get AI to value. This is the year to do that in the enterprise.”
Watch the full video conversation with Ronnie Sheth below:
-
Fintech6 months agoRace to Instant Onboarding Accelerates as FDIC OKs Pre‑filled Forms | PYMNTS.com
-
Cyber Security7 months agoHackers Use GitHub Repositories to Host Amadey Malware and Data Stealers, Bypassing Filters
-
Fintech6 months ago
DAT to Acquire Convoy Platform to Expand Freight-Matching Network’s Capabilities | PYMNTS.com
-
Fintech5 months agoID.me Raises $340 Million to Expand Digital Identity Solutions | PYMNTS.com
-
Artificial Intelligence7 months agoNothing Phone 3 review: flagship-ish
-
Artificial Intelligence7 months agoThe best Android phones
-
Fintech4 months agoTracking the Convergence of Payments and Digital Identity | PYMNTS.com
-
Fintech7 months agoIntuit Adds Agentic AI to Its Enterprise Suite | PYMNTS.com
